精英家教网 > 高中数学 > 题目详情
7.不等式$\sqrt{2x+1}$>$\sqrt{x+1}$-1的解是(  )
A.[-$\frac{1}{2}$,+∞)B.(0,$\frac{1}{2}$)C.($\frac{1}{2}$,+∞]D.(0,$\frac{1}{2}$]

分析 不等式即$\left\{\begin{array}{l}{2x+1≥0}\\{x+1≥0}\\{\sqrt{2x+1}+1>\sqrt{x+1}}\end{array}\right.$,即 $\left\{\begin{array}{l}{x≥-\frac{1}{2}}\\{2\sqrt{2x+1}>-x-1}\end{array}\right.$,由此求得x的范围.

解答 解:由不等式$\sqrt{2x+1}$>$\sqrt{x+1}$-1,可得$\left\{\begin{array}{l}{2x+1≥0}\\{x+1≥0}\\{\sqrt{2x+1}+1>\sqrt{x+1}}\end{array}\right.$,
∴$\left\{\begin{array}{l}{x≥-\frac{1}{2}}\\{2x+1+2\sqrt{2x+1}+1>x+1}\end{array}\right.$,即 $\left\{\begin{array}{l}{x≥-\frac{1}{2}}\\{2\sqrt{2x+1}>-x-1}\end{array}\right.$ ①.
由于当x≥-$\frac{1}{2}$时,-x-1<0,2$\sqrt{2x+1}$>-x-1恒成立,
解得①的解为 x≥-$\frac{1}{2}$,
故选:A.

点评 本题主要考查根式不等式的解法,体现了等价转化的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.函数f(x)=$\frac{lgx}{x-2}$的定义域为(0,2)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设F1,F2分别为双曲线$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,若在双曲线右支上存在点P,满足|PF2|=|F1F2|,且F2到直线PF1的距离等于双曲线的实轴长,则该双曲线的离心率为(  )
A.$\frac{5}{3}$B.$\frac{5}{4}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知等差数列{an}的前n项和为Sn,a2+5=2a4,a10=-3,则a1=15,S8=64.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若直线ax-by+2=0(a>0,b>0)被圆x2+y2+2x-4y+1=0所截得的弦长为4,则$\frac{2}{a}+\frac{3}{b}$的最小值为(  )
A.10B.4+2$\sqrt{6}$C.4+2$\sqrt{3}$D.4$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,角A,B,C所对应的边分别为a,b,c.
(Ⅰ)若$\frac{sinA}{2a}$+$\frac{cosB}{b}$=0,求$\frac{cos(2π-B)}{cos(\frac{π}{2}-B)-2cosB}$的值;
(Ⅱ)若cos2$\frac{B}{2}$=$\frac{a+c}{2a}$,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设非空集合A={x|-2≤x≤a},B={y|y=2x+3,x∈A},C={y|y=x2,x∈A},是否存在实数a,使B∩C=C?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知p:-2x2+3x-1≥0,q:x2-(2a-1)x+a2≤a,若¬q是¬p的充分不必要条件,则实数a的取值范围是[1,$\frac{3}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图所示,一物体沿斜面在拉力F的作用下由A经B,C运动到D,其中AB=50m,BC=40m,CD=30m,变力F=$\left\{\begin{array}{l}{\frac{1}{4}x+5,0≤x≤90}\\{20,x>90}\end{array}\right.$(其中x为距离,单位:m,变力F的单位:N),在AB段运动时F与运动方向成30°角,在BC段运动时F与运动方向成45°,在CD段F与运动方向相同,求物体由A运动到D变力F所作的功W.

查看答案和解析>>

同步练习册答案