精英家教网 > 高中数学 > 题目详情
18.已知数列{an}为等差数列,Sn为其前n项和,若a3=20,2S3=S4+8.
(1)求数列{an}的通项公式
(2)设bn=$\frac{1}{{S}_{n}-1}$(n∈N*),Tn=b1+b2+…+bn,求Tn

分析 (1)运用等差数列的通项公式和求和公式,解方程组,可得首项和公差,即可得到所求通项;
(2)求得bn=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),再由数列的求和方法:裂项相消求和,化简整理,即可得到所求和.

解答 解:(1)设数列{an}的公差为d,
由2S3=S4+8得:2(3a1+$\frac{3×2}{2}$d)=4a1+$\frac{4×3}{2}$d+8,
解得a1=4;
由a3=a1+2d=20,所以d=8,
故数列{an}的通项公式为:an=a1+(n-1)d=8n-4;
(2)由(1)可得${S_n}=4{n^2}$,
${b_n}=\frac{1}{{4{n^2}-1}}=\frac{1}{{({2n-1})({2n+1})}}=\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,
则${T_n}=\frac{1}{2}(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+…+\frac{1}{2n-1}-\frac{1}{2n+1})=\frac{1}{2}(1-\frac{1}{2n+1})=\frac{n}{2n+1}$.

点评 本题考查等差数列的通项公式的求法,注意运用等差数列的通项公式和求和公式,考查数列的求和方法:裂项相消求和,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.在△ABC中,已知a=$\sqrt{6}$,A=60°,b-c=$\sqrt{3}$-1,解三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=ax+b是奇函数,且过点(4,-12),则a、b的值分别为(  )
A.a=0,b=-3B.a=-3,b=0C.a=3,b=0D.a=0,b=3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在正方形AG1G2G3中,点B,C分别是G1G2,G2G3的中点,点E,F分别是G3C,AC的中点,现在沿AB,BC及AC把这个正方形折成一个四面体,使G1,G2,G3三点重合,重合后记为G.
(I)判断在四面体GABC的四个面中,哪些面的三角形是直角三角形,若是直角三角形,写出其直角(只需写出结论);
(Ⅱ)求证:AG⊥BC
(Ⅲ)请在四面体GABC的直观图中标出点E,F,求证:平面EFB⊥平面GBC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数$f(x)={sin^2}x+\sqrt{3}sinxcosx(x∈R)$.
(1)求函数f(x)的最小正周期与对称轴方程;
(2)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数y=f(x)是定义在(0,+∞)上的函数,并且满足下面三个条件:
①对任意正数x,y,都有f(xy)=f(x)+f(y);
②当x>1时,f(x)>0;
③f(3)=1,
(1)求f(1),$f(\frac{1}{3})$的值;
(2)判断函数f(x)在区间(0,+∞)上单调性,并用定义给出证明;
(3)对于定义域内的任意实数x,f(kx)+f(4-x)<2(k为常数,且k>0)恒成立,求正实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.有A、B、C三种零件,分别为a个、300个、200个,采用分层抽样法抽取一个容量为45的样本,A种零件被抽取20个,则a=400.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知y=f(x)是定义在R上的偶函数,在区间[0,+∞)上单调递增,且f(1)=0,那么不等式$\frac{f(x)}{x}$>0的解集是(  )
A.{x|x>1或-1<x<0}B.{x|x>1或x<-1}C.{x|0<x<1或x<-1}D.{x|-1<x<1且x≠0}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在直角坐标系内,已知A(3,3)是⊙C上一点,折叠该圆两次使点A分别与圆上不相同的两点(异于点A)重合,两次的折痕方程分别为x-y+1=0和x+y-7=0,若⊙C上存在点P,使∠MPN=90°,其中M、N的坐标分别为(-m,0)(m,0),则m的最大值为(  )
A.4B.5C.6D.7

查看答案和解析>>

同步练习册答案