精英家教网 > 高中数学 > 题目详情
10.有A、B、C三种零件,分别为a个、300个、200个,采用分层抽样法抽取一个容量为45的样本,A种零件被抽取20个,则a=400.

分析 根据分层抽样的定义求出在各层中的抽样比,即样本容量比上总体容量,问题得以解决.

解答 解:根据题意得,$\frac{45}{a+300+200}$=$\frac{20}{a}$,解得a=400.
故答案为:400.

点评 本题的考点是分层抽样方法,根据样本结构和总体结构保持一致,求出抽样比,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知二次函数f(x)=ax2+bx+c,且不等式f(x)>0的解为1<x<3.
(1)证明:二次函数f(x)图象向下平移|a|个单位顶点在x轴上;
(2)若函数f(x)-2x的最大值为正数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数$f(x)=lg\frac{x+1}{x-1}$.
(1)求该函数的定义域;
(2)判断该函数的奇偶性并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}为等差数列,Sn为其前n项和,若a3=20,2S3=S4+8.
(1)求数列{an}的通项公式
(2)设bn=$\frac{1}{{S}_{n}-1}$(n∈N*),Tn=b1+b2+…+bn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.圆心为(-3,2)且过点A(1,-1)的圆的方程是(  )
A.(x-3)2+(y-2)2=5B.(x+3)2+(y-2)2=5C.(x-3)2+(y-2)2=25D.(x+3)2+(y-2)2=25

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数$f(x)=\left\{\begin{array}{l}{x^2}+2x,x∈(-∞,0)\\ ln(x+1),x∈[0,+∞).\end{array}\right.g(x)={x^2}-4x-4$,若存在实数a,使得f(a)+g(x)=0,则x的取值范围为(  )
A.[-1,5]B.(-∞,-1]∪[5,+∞)C.[-1,+∞)D.(-∞,5]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知角α的顶点与直角坐标系的原点重合,始边与x轴的非负半轴重合,若点P(1,-$\sqrt{3}$)是角α终边上一点,则tanα的值为(  )
A.$\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$C.-$\sqrt{3}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知sin(α+$\frac{π}{8}$)cos(α+$\frac{π}{8}$)=$\frac{\sqrt{3}}{4}$,α∈($\frac{π}{8}$,$\frac{π}{4}$),cos(2β-$\frac{π}{4}$)=$\frac{3}{5}$,β∈($\frac{π}{4}$,$\frac{π}{2}$).
(1)求sin(2α+$\frac{π}{4}$)及cos(2α+$\frac{π}{4}$)的值;
(2)求cos(2α+2β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.不等式组$\left\{\begin{array}{l}{x>0}\\{x+y<3}\\{y>x+1}\end{array}\right.$表示的平面区域为M,直线y=kx-1与区域M没有公共点,则实数k的最大值为(  )
A.3B.0C.-3D.不存在

查看答案和解析>>

同步练习册答案