精英家教网 > 高中数学 > 题目详情
7.已知y=f(x)是定义在R上的偶函数,在区间[0,+∞)上单调递增,且f(1)=0,那么不等式$\frac{f(x)}{x}$>0的解集是(  )
A.{x|x>1或-1<x<0}B.{x|x>1或x<-1}C.{x|0<x<1或x<-1}D.{x|-1<x<1且x≠0}

分析 根据函数的奇偶性和单调性之间的关系,将不等式进行转化,即可得到不等式的解集.

解答 解:∵偶函数f(x)在[0,+∞)上为增函数,f(1)=0,
∴对应的图象如图:
不等式$\frac{f(x)}{x}$>0等价为$\left\{\begin{array}{l}{x>0}\\{f(x)>0}\end{array}\right.$或$\left\{\begin{array}{l}{x<0}\\{f(x)<0}\end{array}\right.$,
即-1<x<0或x>1,
即不等式的解集为{x|x>1或-1<x<0},
故选:A.

点评 本题主要考查不等式的解法,利用函数的奇偶性和单调性之间的关系是解决本题的关键,综合考查函数性质的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.函数f(x)=x2在区间[$\frac{i-1}{n}$,$\frac{i}{n}$]上(  )
A.函数f(x)的值变化很小B.函数f(x)的值变化很大
C.函数f(x)的值不变化D.当n很大时,函数f(x)的值变化很小

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}为等差数列,Sn为其前n项和,若a3=20,2S3=S4+8.
(1)求数列{an}的通项公式
(2)设bn=$\frac{1}{{S}_{n}-1}$(n∈N*),Tn=b1+b2+…+bn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数$f(x)=\left\{\begin{array}{l}{x^2}+2x,x∈(-∞,0)\\ ln(x+1),x∈[0,+∞).\end{array}\right.g(x)={x^2}-4x-4$,若存在实数a,使得f(a)+g(x)=0,则x的取值范围为(  )
A.[-1,5]B.(-∞,-1]∪[5,+∞)C.[-1,+∞)D.(-∞,5]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知角α的顶点与直角坐标系的原点重合,始边与x轴的非负半轴重合,若点P(1,-$\sqrt{3}$)是角α终边上一点,则tanα的值为(  )
A.$\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$C.-$\sqrt{3}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知a>0,函数f(x)=$\frac{|x-2a|}{x+2a}$在区间[1,4]上的最大值等于$\frac{1}{2}$,则a的值为(  )
A.$\frac{2}{3}$或$\frac{3}{2}$B.$\frac{3}{2}$C.2D.$\frac{3}{2}$或2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知sin(α+$\frac{π}{8}$)cos(α+$\frac{π}{8}$)=$\frac{\sqrt{3}}{4}$,α∈($\frac{π}{8}$,$\frac{π}{4}$),cos(2β-$\frac{π}{4}$)=$\frac{3}{5}$,β∈($\frac{π}{4}$,$\frac{π}{2}$).
(1)求sin(2α+$\frac{π}{4}$)及cos(2α+$\frac{π}{4}$)的值;
(2)求cos(2α+2β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.讨论f(x)=ex-ax的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.从全校参加信息技术知识竞赛学生的试卷中,抽取一个样本,考察竞赛的成绩分布,将样本分成5组,绘成频率分布直方图,图中从左到右各小组的长方形的高之比是1:3:6:4:2,最中间一组的频数是18,请结合直方图提供的信息,解答下列问题:
(1)求样本容量;
(2)若从第3,4,5组中采用分层抽样的方法抽取6人参加竞赛成绩分析会,求从第3,4,5组中各抽取的学生人数.

查看答案和解析>>

同步练习册答案