精英家教网 > 高中数学 > 题目详情
7.将函数y=2sin(2x+$\frac{π}{3}$)的图象向右平移$\frac{1}{4}$个周期后,所得图象对应的函数为y=2sin(2x-$\frac{π}{6}$).

分析 求出函数的周期,利用三角函数图象平移求解即可.

解答 解:函数y=2sin(2x+$\frac{π}{3}$)的周期为:π,将函数y=2sin(2x+$\frac{π}{3}$)的图象向右平移$\frac{1}{4}$个周期后,即向右平移$\frac{π}{4}$,可得函数y=2sin(2x-$\frac{π}{2}$+$\frac{π}{3}$)=2sin(2x-$\frac{π}{6}$).
故答案为:y=2sin(2x-$\frac{π}{6}$).

点评 本题考查函数的周期以及三角函数图象的变换,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个顶点为A(2,0),离心率为$\frac{\sqrt{2}}{2}$.直线y=k(x-1)与椭圆C交于不同的两点M,N.
(1)求椭圆C的方程;  
(2)当△AMN的面积为$\frac{4\sqrt{7}}{9}$时,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知D为△ABC的边AB上的一点,且$\overrightarrow{CD}$=$\frac{1}{3}$$\overrightarrow{AC}$+λ•$\overrightarrow{BC}$,则实数λ的值为(  )
A.$\frac{2}{3}$B.$-\frac{2}{3}$C.$\frac{4}{3}$D.$-\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个顶点为A(0,1),离心率为$\frac{\sqrt{2}}{2}$,过点B(0,-2)及左焦点F1的直线交椭圆于C,D两点,右焦点为F2
(1)求椭圆的方程;
(文科)(2)求弦长CD.
(理科)(2)求△CDF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=x3+3x2-1在x=(  )处取得极小值.
A.3B.2C.0D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)按照下述方法定义:当x≤2时,f(x)=-x2+2x;当x>2时,f(x)=$\frac{1}{2}$(x-2)2,方程f(x)=$\frac{1}{2}$的所有实数根之和是(  )
A.2B.3C.5D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2+bx+c(b,c为常数),对任意α∈R、β∈R,恒有f(sinα)≥0,且f(2+cosβ)≤0
(1)求f(1)的值
(2)求证:c≥3
(3)若f(sinα)的最大值为8,求f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}={1^{\;}}({a,b>0})$的左、右焦点分别为F1,F2,过F2的直线与双曲线C的右支相交于P,Q两点,若$\overrightarrow{P{F_2}}=3\overrightarrow{{F_2}Q}$,若△PQF1是以Q为顶角的等腰三角形,则双曲线的离心率e=(  )
A.3B.2C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数y=log5(1-x)的定义域是(  )
A.(1,+∞)B.(-∞,1)C.(-1,1)D.(-∞,1]

查看答案和解析>>

同步练习册答案