精英家教网 > 高中数学 > 题目详情
已知命题p:x1和x2是方程x2-mx-2=0的两个实根,不等式a2-5a-3≥|x1-x2|对任意实数m∈[-1,1]恒成立;命题q:不等式ax2+2x-1>0有解,若命题p是真命题,命题q是假命题,求a的取值范围.
∵x1,x2是方程x2-mx-2=0的两个实根
x1+x2=m
x1x2=-2

∴|x1-x2|=
(x1+x2)2-4x1x2

=
m2+8

∴当m∈[-1,1]时,|x1-x2|max=3,
由不等式a2-5a-3≥|x1-x2|对任意实数m∈[-1,1]恒成立.
可得:a2-5a-3≥3,∴a≥6或a≤-1,
∴命题p为真命题时a≥6或a≤-1,
命题q:不等式ax2+2x-1>0有解.
①当a>0时,显然有解.
②当a=0时,2x-1>0有解
③当a<0时,∵ax2+2x-1>0有解,
∴△=4+4a>0,∴-1<a<0,
从而命题q:不等式ax2+2x-1>0有解时a>-1.
又命题q是假命题,
∴a≤-1,
故命题p是真命题且命题q是假命题时,
a的取值范围为a≤-1.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知命题,命题.若命题“”是真命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列命题
①“若x+y=0,则x,y互为相反数”的逆命题;
②“若a>b,则a2>b2”的逆否命题;
③“若x≤-3,则x2+x-6≥0”的否命题.
其中真命题个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

PA⊥⊙O所在的平面,AB是⊙O的直径,C是⊙O上的一点,E,F分别是点A在PB,PC上的射影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确命题的序号是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=
sinx
x
,下列命题正确的是______.(写出所有正确命题的序号)
①f(x)是奇函数
②对定义域内任意x,f(x)<1恒成立;
③当x=
3
2
π
时,f(x)取得极小值;
④f(2)>f(3)
⑤当x>0时,若方程|f(x)|=k有且仅有两个不同的实数解α,β(α>β)则β•cosα=-α•sinβ

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列说法错误的是(  )
A.如果直线上的两点在一个平面内,那么此直线在平面内
B.过空间中三点,有且只有一个平面
C.若两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线
D.平行于同一条直线的两条直线互相平行

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在下列说法中一定正确的是(  )
(1)点A(2x)一定位于A(x)的右侧.(2)在数轴上到点C(x)的距离等于3的点有两个.(3)点D(a)不一定在F(-a)的右侧.(4)G(x2)一定在H(x)的右侧.
A.(1)(2B.(3)(4)C.(2)(3)D.(1)(4)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

假设a1,a2,a3,a4是一个等差数列,且满足0<a1<2,a3=4.若bn=2an(n=1,2,3,4).给出以下命题:
①数列{bn}是等比数列;
②b2>4;
③b4>32;
④b2b4=256.
其中正确命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下列说法:
①设α,β都是锐角,则必有sin(α+β)<sinα+sinβ
②在△ABC中,若sin2A+sin2B<sin2C,则△ABC为锐角三角形.
③在△ABC中,若A<B,则cos2A<cos2B;
则其中正确命题的序号是______.

查看答案和解析>>

同步练习册答案