精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
sinx
x
,下列命题正确的是______.(写出所有正确命题的序号)
①f(x)是奇函数
②对定义域内任意x,f(x)<1恒成立;
③当x=
3
2
π
时,f(x)取得极小值;
④f(2)>f(3)
⑤当x>0时,若方程|f(x)|=k有且仅有两个不同的实数解α,β(α>β)则β•cosα=-α•sinβ
①函数的定义域是{x|x≠0,x∈R},f(-x)=
sin(-x)
-x
=
sinx
x
=f(x),∴f(x)是偶函数,故①错误;
②∵根据三角函数线的定义知|sinx|≤|x|,∴
|sinx|
|x|
≤1,∵x≠0,∴
sinx
x
<1成立,故②正确;
③∵f′(x)=
xcosx-sinx
x2
,∵f′(
2
)=
4
2
≠0,∴x=
2
不是极值点,∴③错误;
④∵
π
2
<2<3<π,∴sin2>sin3>0,∴
sin2
2
sin3
3
,∴④正确;

因为|
sinx
x
|=k(x>0)有且仅有两个不同的根α,β,所以,k>0
因为x>0时,y=sinx为周期函数,y=x为增函数
所以,f(x)在(0,π)的最大值>f(x)在(π,2π)的最大值>f(x)在(2π,3π)的最大值>…
因为,α>β
所以,α必为y=f(x)在(π,2π)取最大值时x的值,
π<x<2π时,f(x)=|
sinx
x
|=-
sinx
x

f'(x)=
-xcosx+sinx
x2
,令f'(x)=0,
则αcosα-sinα=0,即cosα=
sinα
α

所以,f(α)=-
sinα
α
=-cosα=k
α,β为方程f(x)=k在(0,π)的根
所以,
sinβ
β
=k
所以,
sinβ
β
=-cosα
即:βcosα=-sinβ,故⑤错误
故答案为:②④
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

给出下列结论:
①与圆x2+y2=1及圆x2+y2-8x+12=0都外切的圆的圆心在一个椭圆上.
②若直线y=kx-1与双曲线x2-y2=4右支有两个公共点,则k∈(1,
5
2
)

③经过椭圆
x2
2
+y2=1
的右焦点F作倾斜角为600的直线l交椭圆于A,B两点,且|AF|>|BF|,则
AF
=
9+3
2
7
FB

④抛物线y2=2x上的点P到直线y=x+4的距离的最小值为
7
2
4

其中正确结论的序号是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线m、n和平面a、β.下列四个命题中,
①若ma,na,则mn;
②若m?α,n?α,mβ,nβ,则αβ;
③若α⊥β,m?α,则m⊥β;
④若α⊥β,m⊥β,m?α,则mα,
其中正确命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列判断错误的是(  )
A.a,b,m为实数,则“am2<bm2”是“a<b”的充分不必要条件
B.命题“对任意x∈R,x3-x2-1≤0”的否定是“存在x∈R,x3-x2-1>0”
C.若p且q为假命题,则p,q均为假命题
D.命题“若x=y,则sinx=siny”的逆否命题为真命题

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下列命题中所有正确的命题是:______.
(1)不同的两个数a,b的等差中项A的绝对值必大于它们的等比中项G的绝对值.(等差中项A,等比中项G均存在)
(2)无穷等差数列中有三项是13,25,41,则2013一定是此数列中的一项.
(3)等比数列{an}中所有项均为正数,并且公比q≠1,则a2+a6>a3+a5
(4)对任何数列{an}(n≥3),都存在一个等差数列{xn}与一个等比数列{yn},使得对任何n∈N*,an=xn+yn

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设[x]表示不超过x的最大整数,如[π]=3,[-2.3]=-3.给出下列命题:
①对任意实数x,都有x-1<[x]≤x;
②对任意实数x,y,都有[x+y]≤[x]+[y];
③[lg1]+[lg2]+[lg3]+…+[lg100]=90;
④若函数f(x)=[x•[x]],当x∈[0,n)(n∈N*)时,令f(x)的值域为A,记集合A的元素个数为an,则
an+49
n
的最小值为
19
2

其中所有真命题的序号是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知命题p:x1和x2是方程x2-mx-2=0的两个实根,不等式a2-5a-3≥|x1-x2|对任意实数m∈[-1,1]恒成立;命题q:不等式ax2+2x-1>0有解,若命题p是真命题,命题q是假命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设函数f(x)=lnx,有以下4个命题:
①对任意的x1、x2∈(0,+∞),有f(
x1+x2
2
)≤
f(x1)+f(x2)
2

②对任意的x1、x2∈(1,+∞),有f(x1)-f(x2)<x2-x1
③对任意的x1、x2∈(e,+∞),有x1f(x2)<x2f(x1);
④对任意的0<x1<x2,总有x0∈(x1,x2),使得f(x0)≤
f(x1)-f(x2)
x1-x2
.其中正确的是______(填写序号).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知命题,;命题,,则下列命题中为真命题的是( )
A.B.C.D.

查看答案和解析>>

同步练习册答案