精英家教网 > 高中数学 > 题目详情
设函数f(x)=lnx,有以下4个命题:
①对任意的x1、x2∈(0,+∞),有f(
x1+x2
2
)≤
f(x1)+f(x2)
2

②对任意的x1、x2∈(1,+∞),有f(x1)-f(x2)<x2-x1
③对任意的x1、x2∈(e,+∞),有x1f(x2)<x2f(x1);
④对任意的0<x1<x2,总有x0∈(x1,x2),使得f(x0)≤
f(x1)-f(x2)
x1-x2
.其中正确的是______(填写序号).
∵f(x)=lnx是(0,+∞)上的增函数,
∴对于①由f(
x1+x2
2
)
=ln
x1+x2
2
f(x1)+f(x2)
2
=ln
x1x2
,∵
x1+x2
2
x1x2

f(
x1+x2
2
)
f(x1)+f(x2)
2
故①错误.
对于②③,不妨设x1<x2则有f(x1)<f(x2),
故由增函数的定义得f(x1)-f(x2)<x2-x1 故②正确,
由不等式的性质得x1f(x1)<x2f(x2),故③错误;
对于④令1=x1<x2=e2,x0=e得,f(x0)>
f(x1)-f(x2)
x1-x2
,故④错误.
故答案为②.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

设f(x)是定于在(0,1)上的函数,且满足:①对任意x∈(0,1),恒有f(x)>0;②对任意x1,x2∈(0,1),恒有
f(x1)
f(x2)
+
f(1-x1)
f(1-x2)
≤2,则关于函数f(x)有:
(1)对任意x∈(0,1),都有f(x)>f(1-x);
(2)对任意x∈(0,1),都有f(x)=f(1-x);
(3)对任意x∈(0,1),恒有f′(x)=0;
(4)当x∈(0,1),函数y=
f(x)
x
+x为减函数.
上述四个命题中正确的有______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=
sinx
x
,下列命题正确的是______.(写出所有正确命题的序号)
①f(x)是奇函数
②对定义域内任意x,f(x)<1恒成立;
③当x=
3
2
π
时,f(x)取得极小值;
④f(2)>f(3)
⑤当x>0时,若方程|f(x)|=k有且仅有两个不同的实数解α,β(α>β)则β•cosα=-α•sinβ

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在下列说法中一定正确的是(  )
(1)点A(2x)一定位于A(x)的右侧.(2)在数轴上到点C(x)的距离等于3的点有两个.(3)点D(a)不一定在F(-a)的右侧.(4)G(x2)一定在H(x)的右侧.
A.(1)(2B.(3)(4)C.(2)(3)D.(1)(4)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

假设a1,a2,a3,a4是一个等差数列,且满足0<a1<2,a3=4.若bn=2an(n=1,2,3,4).给出以下命题:
①数列{bn}是等比数列;
②b2>4;
③b4>32;
④b2b4=256.
其中正确命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设有两个命题:①方程x2+ax+9=0没有实数根;②实数a为非负数.如果这两个命题中有且只有一个是真命题,那么实数a的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下列说法:
①设α,β都是锐角,则必有sin(α+β)<sinα+sinβ
②在△ABC中,若sin2A+sin2B<sin2C,则△ABC为锐角三角形.
③在△ABC中,若A<B,则cos2A<cos2B;
则其中正确命题的序号是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

原命题为“若互为共轭复数,则”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是(  )
A.真,假,真B.假,假,真C.真,真,假D.假,假,假

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知命题p:.则为(        ).
A.B.
C.D.

查看答案和解析>>

同步练习册答案