精英家教网 > 高中数学 > 题目详情
11.函数y=ex(2x-1)的大致图象是(  )
A.B.
C.D.

分析 判断函数的单调性,计算函数与坐标轴的交点坐标即可得出答案.

解答 解:y′=ex(2x-1)+2ex=ex(2x+1),
令y′=0得x=-$\frac{1}{2}$,
∴当x<-$\frac{1}{2}$时,y′<0,当x$>-\frac{1}{2}$时,y′>0,
∴y=ex(2x-1)在(-∞,-$\frac{1}{2}$)上单调递减,在(-$\frac{1}{2}$,+∞)上单调递增,
当x=0时,y=e0(0-1)=-1,∴函数图象与y轴交于点(0,-1);
令y=ex(2x-1)=0得x=$\frac{1}{2}$,∴f(x)只有1个零点x=$\frac{1}{2}$,
当x$<\frac{1}{2}$时,y=ex(2x-1)<0,当x$>\frac{1}{2}$时,y=ex(2x-1)>0,
综上,函数图象为A.
故选A.

点评 本题考查了函数的图象判断,函数单调性、零点、极值的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数fn(x)=$\frac{1}{3}{x^3}-\frac{1}{2}({n+1}){x^2}+x({n∈N*})$,数列{an}满足an+1=f'n(an),a1=3.
(1)是否存在n,使得fn(x)在x=1处取得极值,若存在,求n的值,若不存在,说明理由;
(2)求a2,a3,a4的值,请猜想数列{an}的通项公式,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.底面是边长为1的正方形,侧面是等边三角形的四棱锥的外接球的体积为(  )
A.$\frac{2\sqrt{2}π}{3}$B.$\frac{\sqrt{2}π}{3}$C.$\frac{2\sqrt{3}π}{3}$D.$\frac{\sqrt{3}π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.记min$\left\{{a,b}\right\}=\left\{{\begin{array}{l}{a,}&{a≤b}\\{b,}&{a>b}\end{array}}$,已知向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$满足$|{\overrightarrow a}|=1,|{\overrightarrow b}$|=2,$\overrightarrow a$与$\overrightarrow b$的夹角为120°,$\overrightarrow c=λ\overrightarrow a+μ\overrightarrow b\;,λ+μ=2$,则当min$\left\{{\overrightarrow c•\overrightarrow a,\overrightarrow c•\overrightarrow b}\right\}$取得最大值时,$|{\overrightarrow c}$|=$\frac{2\sqrt{21}}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.${∫}_{0}^{1}$xdx=(  )
A.0B.$\frac{1}{2}$C.1D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x3-3x2-9x+2
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)求函数f(x)在区间[-2,2]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知复数z=(2+3i)i,在复平面内与复数z对应的点的坐标为(-3,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=$\sqrt{3}$sin(ωx-$\frac{π}{6}$)-$\frac{1}{2}$(ω>0),函数图象的对称中心到对称轴的最小距离为$\frac{π}{4}$,将函数f(x)的图象向右平移$\frac{π}{12}$个单位长度得到函数g(x)的图象,若g(x)-3≤m≤g(x)+3在x∈[0,$\frac{π}{3}$]上恒成立,则实数m的取值范围是(  )
A.[-2,1]B.[-5,1]C.[-2,4]D.[-5,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知等比数列{an}的前n项和Sn=$\frac{{4}^{n}-1}{3}$,则数列{$\sqrt{{a}_{n}}$}的前n项和Tn=(  )
A.2n-1B.$\sqrt{\frac{{4}^{n}-1}{3}}$C.$\frac{{2}^{n}-1}{3}$D.$\frac{{2}^{n+1}-3}{3}$

查看答案和解析>>

同步练习册答案