ÒÑÖªÍÖÔ²C1£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄÀëÐÄÂÊΪ
3
2
£¬Ò»¸ö½¹µã×ø±êΪF(-
3
£¬0)
£®
£¨1£©ÇóÍÖÔ²C1µÄ·½³Ì£»
£¨2£©µãNÊÇÍÖÔ²µÄ×󶥵㣬µãPÊÇÍÖÔ²C1Éϲ»Í¬ÓÚµãNµÄÈÎÒâÒ»µã£¬Á¬½Ó
NP²¢ÑÓ³¤½»ÍÖÔ²ÓÒ×¼ÏßÓëµãT£¬Çó
TP
NP
µÄÈ¡Öµ·¶Î§£»
£¨3£©ÉèÇúÏßC2£ºy=x2-1ÓëyÖáµÄ½»µãΪM£¬¹ýM×÷Á½Ìõ»¥Ïà´¹Ö±µÄÖ±ÏßÓëÇúÏßC2¡¢ÍÖÔ²C1ÏཻÓÚµãA¡¢DºÍB¡¢E£¬£¨Èçͼ£©£¬¼Ç¡÷MAB¡¢
¡÷MDEµÄÃæ»ý·Ö±ðÊÇS1£¬S2£¬µ±
S1
S2
=
27
64
ʱ£¬ÇóÖ±ÏßABµÄ·½³Ì£®
·ÖÎö£º£¨1£©ÏÈÀûÓÃÀëÐÄÂʺͽ¹µã×ø±ê£¬µÃµ½Ò»¸ö¹ØÓÚ²ÎÊýµÄ·½³Ì×飬½âÕâ¸ö·½³Ì×é¼´¿ÉÇó³ö²ÎÊý£¬½ø¶øÇó³öÍÖÔ²C1µÄ·½³Ì£®
£¨2£©ÓÉÌâÉèÌõ¼þÐÐÇó³öN£¨-2£¬0£©£¬ÍÖÔ²ÓÒ×¼Ïߣºx=
4
3
3
£¬ÉèP£¨x£¬y£©£¬Ôò
TP
NP
=
4
3
3
-x
x+2
£¬ÔÙÓÉ-2¡Üx¡Ü2£¬ÄÜÇó³ö
TP
NP
µÄÈ¡Öµ·¶Î§£®
£¨3£©ÏÈ°ÑÖ±ÏßMAµÄ·½³ÌÓëÅ×ÎïÏß·½³ÌÁªÁ¢¿ÉµÃµãAµÄ×ø±ê£¬ÔÙÀûÓÃÏÒ³¤¹«Ê½Çó³ö|MA|£¬Í¬ÑùµÄ·½·¨Çó³ö|MB|½ø¶øÇó³öS1£¬Í¬Àí¿ÉÇóS2£®ÔÙ´úÈëÒÑÖª¾Í¿ÉÖªµÀÊÇ·ñ´æÔÚÖ±ÏßlÂú×ãÌâÖÐÌõ¼þÁË£®
½â´ð£º½â£º£¨1£©¡ßÍÖÔ²C1£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄÀëÐÄÂÊΪ
3
2
£¬
Ò»¸ö½¹µã×ø±êΪF(-
3
£¬0)
£¬
¡à
c
a
=
3
2
c=
3
£¬
¡àa=2£¬c=
3
£¬b=
4-3
=1
£¬
¡àÍÖÔ²C1µÄ·½³ÌΪ£º
x2
4
+y2=1
£®
£¨2£©¡ßNÊÇÍÖÔ²C1£º
x2
4
+y2=1
µÄ×󶥵㣬µãPÊÇÍÖÔ²C1Éϲ»Í¬ÓÚµãNµÄÈÎÒâÒ»µã£¬
¡àN£¨-2£¬0£©£¬ÍÖÔ²ÓÒ×¼Ïߣºx=
4
3
3
£¬
ÉèP£¨x£¬y£©£¬Ôò
TP
NP
=
4
3
3
-x
x+2
£¬
¡ß-2¡Üx¡Ü2£¬
¡à
TP
NP
=
4
3
3
-x
x+2
¡Ê[
2
3
-3
6
£¬+¡Þ£©£®
¹Ê
TP
NP
µÄÈ¡Öµ·¶Î§ÊÇ[
2
3
-3
6
£¬+¡Þ£©£®
£¨3£©ÉèÖ±ÏßMAµÄбÂÊΪk1£¬ÔòÖ±ÏßMAµÄ·½³ÌΪy=k1x-1£®
ÓÉ
y=k1x-1
y=x2-1
£¬½âµÃ
x=0
y=-1
£¬»ò
x=k1
y=k12-1
£®
ÔòµãAµÄ×ø±êΪ£¨k1£¬k12-1£©£®
ÓÖÖ±ÏßMBµÄбÂÊΪ-
1
k1
£¬Í¬Àí¿ÉµÃµãBµÄ×ø±êΪ£¨-
1
k1
£¬
1
k12
-1
£©£®
ÓÚÊÇS1=
1
2
|MA|•|MB|=
1
2
1+k12
•|k1|•
1+
1
k12
•|-
1
k1
|=
1+k12
2|k1|
£®
ÓÉ
y=k1x-1
x2+4y2-4=0
£¬µÃ£¨1+4k12£©x2-8k1x=0£®
½âµÃ
x=0
y=-1
£¬»ò
x=
8k1
1+4k12
y=
4k12-1
1+4k12
£¬ÔòµãDµÄ×ø±êΪ£¨
8k1
1+4k12
£¬
4k12-1
1+4k12
£©£®
ÓÖÖ±ÏßMEµÄбÂÊΪ-
1
k1
£®Í¬Àí¿ÉµÃµãEµÄ×ø±êΪ£¨
-8k1
1+4k12
£¬
4-k12
4+k12
£©£®
ÓÚÊÇS2=
1
2
|MD|•|ME|=
32(1+k12)•|k1|
(1+4k12)(k12+4)
£®
¹Ê
S1
S2
=
1
64
(4k12+
4
k12
+17)=
27
64
£¬½âµÃk12=2£¬»òk12=
1
2
£®
ÓÖÓɵãA£¬BµÄ×ø±êµÃ£¬k=
k12-
1
k12
k1+
1
k1
=k1-
1
k1
£®ËùÒÔk=¡À
2
2
£®
¹ÊÂú×ãÌõ¼þµÄÖ±Ïß´æÔÚ£¬ÇÒÓÐÁ½Ìõ£¬Æä·½³ÌΪy=
2
2
xºÍy=-
2
2
x
£®
µãÆÀ£º±¾ÌâÊǶÔÍÖÔ²ÓëÅ×ÎïÏßÒÔ¼°Ö±ÏßÓëÅ×ÎïÏߺÍÖ±ÏßÓëÍÖÔ²µÄ×ÛºÏÎÊÌâµÄ¿¼²é£®ÊÇÒ»µÀÕûÀí¹ý³ÌºÜÂé·³µÄÌ⣬ÐèÒªÒªÈÏÕ棬ϸÖµÄ̬¶È²ÅÄÜ°ÑÌâÄ¿×÷ºÃ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²C1£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1¡¢F2£¬ÆäÖÐF2Ò²ÊÇÅ×ÎïÏßC2£ºy2=4xµÄ½¹µã£¬MÊÇC1ÓëC2ÔÚµÚÒ»ÏóÏ޵Ľ»µã£¬ÇÒ|MF2|=
5
3
£®
£¨1£©ÇóÍÖÔ²C1µÄ·½³Ì£»
£¨2£©ÒÑÖªÁâÐÎABCDµÄ¶¥µãA£¬CÔÚÍÖÔ²C1ÉÏ£¬¶Ô½ÇÏßBDËùÔÚµÄÖ±ÏßµÄбÂÊΪ1£®
¢Ùµ±Ö±ÏßBD¹ýµã£¨0£¬
1
7
£©Ê±£¬ÇóÖ±ÏßACµÄ·½³Ì£»
¢Úµ±¡ÏABC=60¡ãʱ£¬ÇóÁâÐÎABCDÃæ»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÒÑÖªÍÖÔ²C1£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄÒ»Ìõ×¼Ïß·½³ÌÊÇx=
25
4
£¬Æä×ó¡¢ÓÒ¶¥µã·Ö±ðÊÇA¡¢B£»Ë«ÇúÏßC2£º
x2
a2
-
y2
b2
=1
µÄÒ»Ìõ½¥½üÏß·½³ÌΪ3x-5y=0£®
£¨1£©ÇóÍÖÔ²C1µÄ·½³Ì¼°Ë«ÇúÏßC2µÄÀëÐÄÂÊ£»
£¨2£©ÔÚµÚÒ»ÏóÏÞÄÚÈ¡Ë«ÇúÏßC2ÉÏÒ»µãP£¬Á¬½ÓAP½»ÍÖÔ²C1ÓÚµãM£¬Á¬½ÓPB²¢ÑÓ³¤½»ÍÖÔ²C1ÓÚµãN£¬Èô
AM
=
MP
£®Çó
MN
AB
µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²C1£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄÀëÐÄÂÊΪ
2
2
£¬Ö±Ïßl£ºy=x+2
2
ÓëÒÔÔ­µãΪԲÐÄ¡¢ÒÔÍÖÔ²C1µÄ¶Ì°ëÖ᳤Ϊ°ë¾¶µÄÔ²ÏàÇУ®
£¨¢ñ£©ÇóÍÖÔ²C1µÄ·½³Ì£®
£¨¢ò£©ÉèÍÖÔ²C1µÄ×ó½¹µãΪF1£¬ÓÒ½¹µãΪF2£¬Ö±Ïßl1¹ýµãF1£¬ÇÒ´¹Ö±ÓÚÍÖÔ²µÄ³¤Öᣬ¶¯Ö±Ïßl2´¹Ö±l1ÓÚµãP£¬Ï߶ÎPF2µÄ´¹Ö±Æ½·ÖÏß½»l2ÓÚµãM£¬ÇóµãMµÄ¹ì¼£C2µÄ·½³Ì£»
£¨¢ó£©ÈôAC¡¢BDΪÍÖÔ²C1µÄÁ½ÌõÏ໥´¹Ö±µÄÏÒ£¬´¹×ãΪÓÒ½¹µãF2£¬ÇóËıßÐÎABCDµÄÃæ»ýµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²C1£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©ÓëË«ÇúÏßC2£ºx2-
y2
4
=1Óй«¹²µÄ½¹µã£¬C2µÄÒ»Ìõ½¥½üÏßÓëÒÔC1µÄ³¤ÖáΪֱ¾¶µÄÔ²ÏཻÓÚA£¬BÁ½µã£¬ÈôC1Ç¡ºÃ½«Ï߶ÎABÈýµÈ·Ö£¬Ôòb2=
0.5
0.5
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ÉÇͷһģ£©ÒÑÖªÍÖÔ²C1£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1¡¢F2£¬ÓÒ¶¥µãΪA£¬ÀëÐÄÂÊe=
1
2

£¨1£©ÉèÅ×ÎïÏßC2£ºy2=4xµÄ×¼ÏßÓëxÖá½»ÓÚF1£¬ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©ÉèÒÑ֪˫ÇúÏßC3ÒÔÍÖÔ²C1µÄ½¹µãΪ¶¥µã£¬¶¥µãΪ½¹µã£¬bÊÇË«ÇúÏßC3ÔÚµÚÒ»ÏóÏÞÉÏÈÎÒâ-µã£¬ÎÊÊÇ·ñ´æÔÚ³£Êý¦Ë£¨¦Ë£¾0£©£¬Ê¹¡ÏBAF1=¦Ë¡ÏBF1Aºã³ÉÁ¢£¿Èô´æÔÚ£¬Çó³ö¦ËµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸