精英家教网 > 高中数学 > 题目详情
有驱虫药1618和1573各3杯,从中随机取出3杯称为一次试验(假定每杯被取到的概率相等),将1618全部取出称为试验成功.
(1)列出一次试验的所有可能情况.
(2)求一次试验成功的概率.
考点:古典概型及其概率计算公式
专题:概率与统计
分析:(1)设1618的三杯分别为a,b,c,1573的三杯为A、B、C,逐一列举出一次试验的所有可能情况即可;
(2)选到的3杯都是1618的选法只有1种,一次取三杯的所有可能情况有20种,根据古典概型概率的计算公式,求出一次试验成功的概率即可.
解答: 解.(1)设1618的三杯分别为a,b,c,1573的三杯为A、B、C,
则一次取三杯的所有可能情况有20种:
(a,b,c),(a,b,A),(a,b,B),(a,b,C),(a,c,A),(a,c,B),(a,c,C),(a,A,B),(a,A,C),(a,B,C),
(b,c,A),(b,c,B),(b,c,C),(b,A,B),(b,A,C),(b,B,C),
(c,A,B),(c,A,C),(c,B,C),(A,B,C).
(2)一次选到的3杯都是1618的选法只有1种,
从而一次试验成功的概率为
1
20
点评:本题主要考查了古典概型及其概率计算公式,属于基础题,解答此题的关键是要弄清楚两点:①符合条件的情况数目;②全部情况的总数;二者的比值就是其发生的概率的大小.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD是边长为1的正方形,CD⊥平面PAD,PA⊥AD,PA=2,E分别PC的中点,点P在棱PA上.
(Ⅰ)求证:AC⊥DE;
(Ⅱ)求三棱锥E-BDF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα=3,求下列各式的值:
(1)
3
cos(-π-α)-sin(π+α)
3
cos(
π
2
+α)+sin(
2
-α)

(2)2sin2α-3sinαcosα-1.

查看答案和解析>>

科目:高中数学 来源: 题型:

平面内两定点A1,A2的坐标分别为(-2,0),(2,0),P为平面一个动点,且P点的横坐标x∈(-2,2),过点P做PQ垂直于直线A1A2,垂足为Q,并满足|PQ|2=
3
4
|A1Q|•|A2Q|
(1)求动点P的轨迹方程;
(2)当动点P的轨迹加上A1,A2两点构成的曲线为C,一条直线l与以点(1,0)为圆心,半径为2的圆M相交于A,B两点.若圆M与x轴的左交点为F,且
FA
FB
=6,求证:直线l与曲线C只有一个公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:

若等差数列{an}满足:a12+a1a2+
5
4
a22≤1,求a1+a2+a3…+a15的最大正整数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在原点,对称轴为坐标轴,且过(0,1),(1,
2
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点S(0,-
1
3
)且斜率为k的动直线l交椭圆C于A,B两点,在y轴上是否存在定点D,使以AB为直径的圆恒过这个点?若存在,求出D的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1中,已知E为棱CC1上的动点.
(1)求证:A1E⊥BD;
(2)当E为棱CC1的中点时,求直线A1E与平面A1BD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-x3+mx在(0,1)上是增函数.
(Ⅰ)实数m的取值集合为A,当m取值集合A中的最小值时,定义数列{an}:满足a1=3,且an>0,an+1=
-3f′(an)+9
(n∈N*),求数列{an}的通项公式;
(Ⅱ)根据(Ⅰ)结论,若b2=
(sn-2)•3n
4nan
(n∈N*),数列{bn}的前n项和为Sn,求证:Sn
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,侧面PAD是正三角形,底面ABCD是直角梯形,AD∥BC,∠ADC=90°,AD=2BC=2,CD=
3
,平面PAD⊥底面ABCD,若M为AD的中点,E是棱PC上的点.
(1)求证:平面EBM⊥平面PAD;
(2)若∠MEC=90°,求三棱锥A-BME的体积.

查看答案和解析>>

同步练习册答案