精英家教网 > 高中数学 > 题目详情
已知椭圆C的中心在原点,对称轴为坐标轴,且过(0,1),(1,
2
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点S(0,-
1
3
)且斜率为k的动直线l交椭圆C于A,B两点,在y轴上是否存在定点D,使以AB为直径的圆恒过这个点?若存在,求出D的坐标,若不存在,说明理由.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线中的最值与范围问题
分析:(Ⅰ)设椭圆方程为mx2+ny2=1,(m>0,n>0,m≠n),由已知条件得
n=1
m+
1
2
n=1
,由此能求出椭圆方程.
(Ⅱ)设动直线l的方程为:y=kx-
1
3
,由
y=kx-
1
3
x2
2
+y2=1
,得(2k2+1)x2-
3
4
kx
-
16
9
=0,由此利用韦达定理结合已知条件能推导出在y轴上存在定点M,使得以AB为直径的圆恒过这个点,点M的坐标为(0,1).
解答: 解:(Ⅰ)∵椭圆C的中心在原点,对称轴为坐标轴,且过(0,1),(1,
2
2
),
∴设椭圆方程为mx2+ny2=1,(m>0,n>0,m≠n),
n=1
m+
1
2
n=1
,解得m=
1
2
,n=1,
∴椭圆方程为
x2
2
+y2=1

(Ⅱ)设动直线l的方程为:y=kx-
1
3

y=kx-
1
3
x2
2
+y2=1
,得(2k2+1)x2-
3
4
kx
-
16
9
=0,
设A(x1,y1),B(x2,y2),
则x1+x2=
4k
3(2k2+1)
,x1x2=-
16
9(2k2+1)

假设在y上存在定点M(0,m),满足题设,
MA
=(x1y1-m),
MB
=(x2y2-m)

MA
MB
=x1x2+(y1-m)(y2-m)
=x1x2+y1y2-m(y1+y2)+m2
=x1x2+(kx1-
1
3
)(kx2-
1
3
)-m(kx1-
1
3
+kx2-
1
3
)+m2

=(k2+1)x1x2-k(
1
3
+m
)(x1+x2)+m2+
2
3
m+
1
9

=-
16(k2+1)
9(2k2+1)
-k(
1
3
+m)•
4k
3(2k2+1)
+m2+
2
3
m+
1
9

=
18(m2-1)k2+(9m2+6m-15)
9(2k2+1)

由假设得对于任意的k∈R,
MA
MB
=0
恒成立,
m2-1=0
9m2+m-15=0

解得m=1.
因此,在y轴上存在定点M,使得以AB为直径的圆恒过这个点,点M的坐标为(0,1).
点评:本题考查椭圆方程的求法,考查满足条件的点的坐标是否存在的判断与求法,解题时要认真审题,注意函数与方程思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的首项a1=2,前n项和Sn满足an+1=Sn+2(n∈N*).
(1)求数列{an}的通项公式
(2)若bn=2log2an,对一切n∈N*
1
b1b2
+
1
b2b3
+
1
b3b4
+…+
1
bnbn+1
<t恒成立,求实数t的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+2sin(ωx-
π
3
)(0<ω<10)的图象过点(-
π
12
,-1)
(1)求函数f(x)的解析式;
(2)若y=t在x∈[
π
3
5
6
π]上与f(x)恒有交点,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直三棱柱ABC-A1B1C1中,AC⊥AB,AB=2AA1,M是AB的中点,△A1MC1是等腰三角形,D为CC1的中点,E为BC上一点.
(1)若DE∥平面A1MC1,求
CE
EB

(2)平面A1MC1将三棱柱ABC-A1B1C1分成两个部分,求较小部分与较大部分的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

有驱虫药1618和1573各3杯,从中随机取出3杯称为一次试验(假定每杯被取到的概率相等),将1618全部取出称为试验成功.
(1)列出一次试验的所有可能情况.
(2)求一次试验成功的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:方程x2+ax-2a2=0在(-1,1)上有解;命题q:函数f(x)=loga(x2-2ax+2)在[2,3]上单调递增,若命题“p∨q”是真命题,“p∧q”是假命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-ax+a
(Ⅰ)若函数f(x)恰好有两个不同的零点,求a的值.
(Ⅱ)若函数f(x)的图象与直线y=x-1相切,求a的值及相应的切点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

某公司准备进行两种组合投资,稳健型组合投资是由每份金融投资20万元,房地产投资30万元组成;进取型组合投资是由每份金融投资40万元,房地产投资30万元组成.已知每份稳健型组合投资每年可获利10万元,每份进取型组合投资每年可获利15万元.若可作投资用的资金中,金融投资不超过160万元,房地产投资不超过180万元,求这两种组合投资应注入多少份,才能使一年获利总额最多?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,在Rt△ABC中,AB=BC=2,D,E分别是AB,AC的中点,将如图2所示中△ADE沿线段DE折起到△ADE,使平面ADE⊥平面DBCE.

(Ⅰ)当M是DE的中点时,证明BM⊥平面ACD;
(Ⅱ)设BE与DC相交于点N,求二面角B-AN-C的余弦值.

查看答案和解析>>

同步练习册答案