精英家教网 > 高中数学 > 题目详情
O点为圆O的圆心,点A,B在圆O上,且点A在第一象限,点B(-
3
5
4
5
),点C为圆O与x轴正半轴的交点,设∠COB=θ,求sin2θ的值.
考点:二倍角的正弦,任意角的三角函数的定义
专题:高考数学专题,三角函数的求值,三角函数的图像与性质
分析:由点B的坐标可知θ为第二象限角,利用同角三角函数间基本关系求出sinθ,cosθ的值,sin2θ利用二倍角的正弦函数公式化简后,将各自的值代入计算即可求出值.
解答: 解:如图,∵点B(-
3
5
4
5
),点C为圆O与x轴正半轴的交点,设∠COB=θ,
∴cos(π-θ)=
4
5
=-cosθ,sin(π-θ)=
3
5

∴cosθ=-
4
5
,sinθ=
3
5

∴sin2θ=2sinθcosθ=2×
3
5
×(-
4
5
)=-
24
25
点评:本题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

方程sinx=
x
10
的根的个数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已x+
1
x
=3,求x2-x-2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线
x2
4
-y2
=1,F1是它的左焦点,直线l通过它的右焦点F2,且与双曲线右支交于A,B两点,则|F1A|•|F1B|的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(
3
,0)
(1)求双曲线C的方程;
(2)P为双曲线C上一点,F1,F2为左右焦点,若
PF1
PF2
=0,求△F1PF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线C1
x2
a2
-
y2
b2
=1(a>0,b>0),斜率为2的直线l过双曲线C1的右焦点,且与双曲线C1左右支各有一个交点,则双曲线C1离心率取值范围
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在五棱锥S-ABCDE中,SA⊥底面ABCDE,SA=AB=AE=2,BC=DE=
3
,∠BAE=∠BCD=∠CDE=120°
(1)证明:CD∥平面SBE;
(2)证明:平面SBC⊥平面SAB.

查看答案和解析>>

科目:高中数学 来源: 题型:

轮船由甲地逆水匀速行驶至乙地,甲、乙两地相距S km,水流速度为常数P km/h,船在静水中的最大速度为Q km/h(Q>P),已知轮船每小时的燃料费用与轮船在静水中的速度V km/h成正比,比例系数为常数K.
(1)将全程燃料费用y(元)表示为静水中速度V(km/h)的函数;
(2)若S=100,P=10,Q=110,K=2,为了使全程的燃料费用最少,轮船的实际前进速度应为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)的反函数为y=f-1(x),且y=f(2x+1)+2的图象过点(1,5),则y=f-1(x)的图象必过点
 

查看答案和解析>>

同步练习册答案