精英家教网 > 高中数学 > 题目详情

如图,已知四棱锥P-ABCD的底面ABCD是菱形,PA⊥平面ABCD,点F为PC的中点.

(1)求证:PA∥平面BDF;
(2)求证:BD⊥平面PAC.

解:(1)证明:连接AC,BD与AC交于点O,连接OF.∵ABCD是菱形,∴O是AC的中点.
∵点F为PC的中点,∴OF∥PA.∵OF?平面BDF,PA?平面BDF,∴PA∥平面BDF.
(2)∵PA⊥平面ABCD,∴PA⊥BD.又∵底面ABCD是菱形,∴BD⊥AC.
又PA∩AC=A,∴BD⊥平面PAC.
分析:(1)设BD与AC交于点O,利用三角形的中位线性质可得OF∥PA,从而证明PA∥平面BDF.
(2)由 PA⊥平面ABCD 得PA⊥BD,依据菱形的性质可得 BD⊥AC,从而证得 BD⊥平面PAC.
点评:本题考查证明线线垂直、线面垂直的方法,直线与平面垂直的判定、性质的应用,取BD与AC交于点O,
是解题的突破口.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图:已知四棱锥P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中点,
求证:
(1)PC∥平面EBD.
(2)平面PBC⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.
(1)证明:AE⊥PD;
(2)设AB=2,若H为线段PD上的动点,EH与平面PAD所成的最大角的正切值为
6
2
,求AP的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD的底面为菱形,∠BCD=60°,PD⊥AD.点E是BC边上的中点.
(1)求证:AD⊥面PDE;
(2)若二面角P-AD-C的大小等于60°,且AB=4,PD=
8
3
3
;①求VP-ABED; ②求二面角P-AB-C大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•崇明县二模)如图,已知四棱锥P-ABCD的底面ABCD为正方形,PA⊥平面ABCD,E、F分别是BC,PC的中点,AB=2,AP=2.
(1)求证:BD⊥平面PAC;
(2)求二面角E-AF-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•吉林二模)如图,已知四棱锥P-ABCD的底面是正方形,PA⊥面ABCD,且PA=AD=2,点M,N分别在PD,PC上,
PN
=
1
2
NC
,PM=MD.
(Ⅰ) 求证:PC⊥面AMN;
(Ⅱ)求二面角B-AN-M的余弦值.

查看答案和解析>>

同步练习册答案