精英家教网 > 高中数学 > 题目详情
15.已知点A(x1,y1),B(x2,y2)是抛物线y2=4x上相异两点,且满足x1+x2=4,若AB的垂直平分线交x轴于点M,则AMB的面积的最大值是(  )
A.$\frac{16\sqrt{6}}{3}$B.8C.$\frac{5\sqrt{15}}{3}$D.6

分析 通过设AB中点为P(2,t),可得直线AB的方程并与抛物线联立,利用韦达定理、两点间距离公式、面积公式及换元法计算即可.

解答 解:当AB垂直于x轴时,显然不符合题意.
设AB中点为P(2,t),于是kAB=$\frac{{y}_{1}-{y}_{2}}{{{x}_{1}-x}_{2}}$=$\frac{{y}_{1}-{y}_{2}}{\frac{{{y}_{1}}^{2}-{{y}_{2}}^{2}}{4}}$=$\frac{4}{{y}_{1}+{y}_{2}}$=$\frac{2}{t}$,
∴可设直线AB的方程为y-t=$\frac{2}{t}$(x-2),
联立方程$\left\{\begin{array}{l}{y-t=\frac{2}{t}(x-2)}\\{{y}^{2}=4x}\end{array}\right.$,消去x得:y2-2ty+2t2-8=0,
∴y1+y2=2t,y1y2=2t2-8,
∴|AB|=$\sqrt{(1+\frac{{t}^{2}}{4})(4{t}^{2}-8{t}^{2}+32)}$=$\sqrt{\frac{4+{t}^{2}}{4}(32-4{t}^{2})}$,
由kAB•kMP=-1,可得kMP=-$\frac{t}{2}$,∴MP:y-t=-$\frac{t}{2}$(x-2),
令y=0,可得M(4,0),
∴|MP|=$\sqrt{(4-2)^{2}+(0-t)^{2}}$=$\sqrt{4+{t}^{2}}$,
于是S△MAB=$\frac{1}{2}$|AB|•|MP|=$\frac{1}{2}$(4+t2)$\sqrt{8-{t}^{2}}$,
令m=$\sqrt{8-{t}^{2}}$,则S=$\frac{1}{2}$(12-m2)•m=-$\frac{1}{2}$m3+6m,
∵S′=-$\frac{3}{2}$m2+6=-$\frac{3}{2}$(m+2)(m-2),
∴S′>0⇒0<m<2,S′<0⇒m>2,
∴当m=2时,(S△MABmax=8,此时t2=4.
故选:B.

点评 本题是一道直线与圆锥曲线的综合题,考查运算求解能力,涉及到韦达定理、两点间距离公式、三角形面积公式、函数的单调性及换元法等知识,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源:2016-2017学年安徽六安一中高二上文周末检测三数学试卷(解析版) 题型:选择题

一个等差数列的首项为,末项且公差为整数,那么项数的取值个数是( )

A.6 B.7 C.8 D.不确定

查看答案和解析>>

科目:高中数学 来源:2017届辽宁庄河市高三9月月考数学(理)试卷(解析版) 题型:解答题

已知三棱柱中,平面平面

.

(Ⅰ)求证:平面

(Ⅱ)求平面与平面所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知向量$\overrightarrow{a}$=(cosx,sinx+$\sqrt{3}$cosx),$\overrightarrow{b}$=(cosx-$\sqrt{3}$sinx,-sinx),f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$.
(1)求函数f(x)的单调递增区间;
(2)当x∈[-$\frac{π}{6}$,$\frac{π}{4}$]时,求函数f(x)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知x、y满足约束条件$\left\{\begin{array}{l}{x+y-4≤0}\\{2x+y-2≥0}\\{3x-y-5≤0}\end{array}\right.$,则z=$\frac{3}{2}$x+3y的最大值为15.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设等差数列{an}的前n项和为Sn,已知a7=4,a19=2a3.数列{bn}的前n项和为Tn.满足${4}^{2{a}_{n}-1}$=λTn-(a3-1)(n∈N*).
(1)问是否存在非零实数λ,使得数列{bn}为等比数列?并说明理由;
(2)已知对于n∈N*,不等式$\frac{1}{{S}_{1}}$$+\frac{1}{{S}_{2}}+\frac{1}{{S}_{3}}+…+\frac{1}{{S}_{n}}$<M恒成立,求实数M的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知一椭圆中心在坐标原点,左右焦点在x轴上,若其左焦点F1(-c,0)(c>0)到圆C:(x-2)2+(y-4)2=1上任意一点距离的最小值为4,且过椭圆右焦点F2(c,0)与上顶点的直线与圆O:x2+y2=$\frac{1}{2}$相切
(Ⅰ)求椭圆E的方程;
(Ⅱ)若直线l:y=-x+m与椭圆E交于A、B两点,当以AB为直径的圆与y轴相切时,求△F1AB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的渐近线方程为$y=±\frac{{\sqrt{3}}}{2}x$,则C的离心率为(  )
A.$\sqrt{5}$B.$\frac{{\sqrt{7}}}{2}$C.$\sqrt{7}$D.$\frac{{\sqrt{21}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设等差数列{an}的前n项和为Sn,且S4=3S2+2,a2n=2an
(1)求等差数列{an}的通项公式an
(2)令bn=$\frac{2n+1}{(n+1)^{2}{{a}_{n}}^{2}}$,数列{bn}的前n项和为Tn.证明:对任意n∈N*,都有$\frac{3}{16}$≤Tn<$\frac{1}{4}$.

查看答案和解析>>

同步练习册答案