分析 (1)利用cos2θ+sin2θ=1消去参数可得圆的直角坐标方程式,由极坐标与直角坐标互化公式代入化简即可得出.
(2)直线l的参数方程$\left\{\begin{array}{l}{x=3+tcos4{5}^{°}}\\{y=4+tsin4{5}^{°}}\end{array}\right.$,(t为参数),代入圆方程得:${t}^{2}+5\sqrt{2}t$+9=0,利用|MA|•|MB|=|t1|•|t2|=|t1t2|即可得出.
解答 解:(1)消去参数可得圆的直角坐标方程式为x2+(y-2)2=4,
由极坐标与直角坐标互化公式得(ρcosθ)2+(ρsinθ-2)2=4化简得ρ=4sinθ,
(2)直线l的参数方程$\left\{\begin{array}{l}{x=3+tcos4{5}^{°}}\\{y=4+tsin4{5}^{°}}\end{array}\right.$,(t为参数).
即$\left\{\begin{array}{l}x=3+\frac{{\sqrt{2}}}{2}t\\ y=4+\frac{{\sqrt{2}}}{2}t\end{array}\right.(t为参数)$代入圆方程得:${t}^{2}+5\sqrt{2}t$+9=0,
设A、B对应的参数分别为t1、t2,则${t_1}+{t_2}=5\sqrt{2}$,t1t2=9,
于是|MA|•|MB|=|t1|•|t2|=|t1t2|=9.
点评 本题考查了参数方程化为普通方程、极坐标方程化为直角坐标方程、直线参数方程的应用,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{1}{2}$,$\frac{1}{2}$) | B. | [-$\frac{1}{2}$,$\frac{1}{2}$] | C. | [-1,1] | D. | (-1,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 甲、乙恰有一人的试跳成绩没有超过2米 | |
| B. | 甲、乙至少有一人的试跳成绩没有超过2米 | |
| C. | 甲、乙两人的试跳成绩都没有超过2米 | |
| D. | 甲、乙至少有一人的试跳成绩超过2米 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com