精英家教网 > 高中数学 > 题目详情
5.已知f(x)=|x-1|+|x+a|,g(a)=a2-a-2.
(1)若a=3,解关于x的不等式f(x)>g(a)+2;
(2)当x∈[-a,1]时恒有f(x)≤g(a),求实数a的取值范围.

分析 (1)若a=3,f(x)=|x-1|+|x+3|,g(3)=4,f(x)>g(a)+2化为|x-1|+|x+3|>6,即可得出结论;
(2)当x∈[-a,1]时恒有f(x)≤g(a),1+a≤a2-a-2,即可求实数a的取值范围.

解答 解:(1)a=3时,f(x)=|x-1|+|x+3|,g(3)=4,
f(x)>g(a)+2化为|x-1|+|x+3|>6,
x<-3时,-x+1-x-3>6,∴x<-4,
-3≤x≤1时,-x+1+x+3>6,无解,
x>1时,x-1+x+3>6,∴x>2.
综上所述,x<-4或x>2,
∴不等式的解集为{x|x<-4或x>2};
(2)∵x∈[-a,1],∴f(x)=1+a,
∴f(x)≤g(a),化为1+a≤a2-a-2,
∴a2-2a-3≥0,
∴a≥3或a≤-1,
-a<1,∴a>-1,
∴a≥3.

点评 本题考查绝对值不等式的解法,考查恒成立问题,考查学生的计算能力,正确转化是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.若复数z满足$\frac{i+z}{i-z}$=|$\sqrt{3}$+i|,则z的实部与虚部之和为(  )
A.0B.$\frac{1}{3}$C.1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=lnx,g(x)=$\frac{1}{2}$x2-2x,.
(1)设h(x)=f(x+1)-g′(x)(其中g′(x)是g(x)的导函数),求h(x)的单调区间;
(2)设k∈Z,当x>1时,不等式k(x-1)<xf(x)+3g′(x)+4恒成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知|x-1|≤1,|y-2|≤1.
(1)求y的取值范围;
(2)若对任意实数x,y,|x-2y+2a-1|≤3成立,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=lnx-ax2-$\frac{1}{2}$x.
(Ⅰ) 当a=$\frac{1}{4}$时,求f(x)的最大值;
(Ⅱ) 令g(x)=f(x)+ax2+$\frac{1}{2}$x+$\frac{a}{x}$,x∈(0,3],其图象上任意一点P(x0,y0)处的切线的斜率k≤$\frac{1}{2}$恒成立,求实数a的取值范围;
(Ⅲ) 当a=0时,方程2mf(x)=x(x-3m)有唯一实数解,求正实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=|lnx|,关于x的不等式f(x)-f($\frac{1}{2}$)≥c(x-$\frac{1}{2}$)的解集为(0,+∞),则c的值是-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,AB是⊙O的一条切线,切点为B,直线ADE、CFD、CGE都是⊙O的割线,已知AC=AB.
(1)若CG=1,CD=4.求$\frac{DE}{GF}$的值.
(2)求证:FG∥AC.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设动点P(t,0),Q(1,t),其中参数t∈[0,1],则线段PQ扫过的平面区域的面积是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.掷两颗均匀骰子,已知第一颗掷出6点条件下,则“掷出点数之和不小于10”的概率是(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{5}{6}$

查看答案和解析>>

同步练习册答案