精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=lnx,g(x)=$\frac{1}{2}$x2-2x,.
(1)设h(x)=f(x+1)-g′(x)(其中g′(x)是g(x)的导函数),求h(x)的单调区间;
(2)设k∈Z,当x>1时,不等式k(x-1)<xf(x)+3g′(x)+4恒成立,求k的最大值.

分析 (1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;
(2)分离参数得到k<$\frac{xlnx+x}{x-1}$+2,对任意x>1恒成立,令g(x)=$\frac{xlnx+x}{x-1}$+2,根据函数的单调性求出g(x)的最小值,从而求出k的最大值即可.

解答 解:(1)h(x)=f(x+1)-g′(x)=ln(x+1)-x+2,x>-1,
所以h′(x)=$\frac{1}{x+1}$-1=$\frac{-x}{x+1}$,
当-1<x<0时,h′(x)>0;当x>0时,h′(x)<0,
因此,h(x)在(-1,0)上单调递增,在(0,+∞)上单调递减.         
(2)不等式k(x-1)<xf(x)+3g′(x)+4,
化为k<$\frac{xlnx+x}{x-1}$+2,
所以k<$\frac{xlnx+x}{x-1}$+2,对任意x>1恒成立.
令g(x)=$\frac{xlnx+x}{x-1}$+2,则g′(x)=$\frac{x-lnx-2}{{(x-1)}^{2}}$,
令h(x)=x-lnx-2,(x>1),则h′(x)=1-$\frac{1}{x}$=$\frac{x-1}{x}$>0,
所以函数h(x)在(1,+∞)上单调递增.
因为h(3)=1-ln3<0,h(4)=2-2ln2>0,
所以方程h(x)=0在(1,+∞)上存在唯一实根x0,且满足x0∈(3,4),
当1<x<x0时,h(x)<0,即g′(x)<0,当x>x0时,h(x)>0,即g′(x)>0,
所以函数g(x)=$\frac{x+xlnx}{x-1}$+2在(1,x0)上单调递减,在(x0,+∞)上单调递增,
所以[g(x)]min=g(x0)=$\frac{{x}_{0}(1+l{nx}_{0})}{{x}_{0}-1}$+2=$\frac{{x}_{0}(1{+x}_{0}-2)}{{x}_{0}-1}$+2=x0+2∈(5,6),
所以k<[g(x)]min=x0+2∈(5,6),
故整数k的最大值是5.

点评 本题考查了函数的单调性问题,考查导数的应用以及函数恒成立问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知实数x,y满足x+y-3=0,则$\sqrt{{{(x-2)}^2}+{{(y+1)}^2}}$的最小值是(  )
A.$\sqrt{2}$B.2C.1D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知f(x)=xlnx-ax,g(x)=-x2-2.
(Ⅰ)对一切x∈(0,+∞),f(x)≥g(x)恒成立,求实数a的取值范围;
(Ⅱ)当a=-1时,求函数f(x)在区间[m,m+3](m>0)上的最值;
(Ⅲ)证明:对一切x∈(0,+∞),都有$lnx+1>\frac{1}{{{{e}^{x+1}}}}-\frac{2}{{{{e}^2}x}}$成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知△ABC的三个顶点在椭圆4x2+5y2=6上,其中A,B两点关于原点O对称,设直线AC的斜率为k1,直线BC的斜率为k2.则k1k2的值为(  )
A.-$\frac{5}{4}$B.-$\frac{4}{5}$C.$\frac{4}{5}$D.$\frac{2\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.己知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的短轴长为6,焦点F1(-c,0)到长轴的两个端点的距离之比为$\frac{1}{9}$.
(I)求椭圆C的离心率及椭圆C的标准方程;
(Ⅱ)若椭圆C上一点P(m,n),满足PF1⊥PF2,当n>0时,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=lg(x+1),若f(a)=1,则a=9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=|x-2|-|x-5|.
(1)求函数f(x)的最值;
(2)若?x∈R,f(x)≥t2-$\frac{7}{2}$t恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)=|x-1|+|x+a|,g(a)=a2-a-2.
(1)若a=3,解关于x的不等式f(x)>g(a)+2;
(2)当x∈[-a,1]时恒有f(x)≤g(a),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.执行程序框图,该程序运行后输出的k的值是(  )
A.6B.5C.4D.3

查看答案和解析>>

同步练习册答案