精英家教网 > 高中数学 > 题目详情
18.在直角坐标系xOy中,直线C1:$y=-\sqrt{3}x$,曲线C2的参数方程是$\left\{\begin{array}{l}x=-\sqrt{3}+cosφ\\ y=-2+sinφ\end{array}\right.$(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.
(Ⅰ)求C1的极坐标方程和C2的普通方程;
(Ⅱ)把C1绕坐标原点沿顺时针方向旋转$\frac{π}{3}$得到直线C3,C3与C2交于A,B两点,求|AB|.

分析 (Ⅰ)利用ρsinθ=y,ρcosθ=x化简可得C1的极坐标方程;根据同角三角函数关系式,消去参数,可得C2直角坐标方程.
(Ⅱ)由题意可得C3:$θ=\frac{π}{3}(ρ∈R)$,即$y=\sqrt{3}x$,再根据点到直线的距离公式和直角三角形即可求出.

解答 解:(Ⅰ)直线C1:$ρsinθ=-\sqrt{3}ρcosθ⇒θ=\frac{2π}{3}(ρ∈R)$,
曲线C2的普通方程为${(x+\sqrt{3})^2}+{(y+2)^2}=1$.
(Ⅱ)C3:$θ=\frac{π}{3}(ρ∈R)$,即$y=\sqrt{3}x$.
圆C2的圆心到直线C3的距离$d=\frac{{|{-3+2}|}}{2}=\frac{1}{2}$.
所以$|{AB}|=2\sqrt{{1^2}-\frac{1}{4}}=\sqrt{3}$.

点评 本题考查了极坐标方程、参数方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知定义在R上的函数f(x)=sinωx(ω>0)的图象与x轴的两个相邻交点的距离等于$\frac{π}{2}$,若将函数y=f(x)的图象向左平移$\frac{π}{6}$个单位得到函数y=g(x)的图象,则使y=g(x)是减函数的区间为(  )
A.$({\frac{π}{4},\frac{π}{3}})$B.$({-\frac{π}{4},\frac{π}{4}})$C.$({0,\frac{π}{3}})$D.$({-\frac{π}{3},0})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}满足a1=1,an+1=2an+1(n∈N*).若数列{bn}满足:4${\;}^{{b_1}-1}}$•4${\;}^{{b_2}-1}}$•…4${\;}^{{b_n}-1}}$=(an+1)bn(n∈N*).
(1)求数列{an}的通项公式;
(2)求证:{bn}是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆Γ的中心在原点,焦点在x轴,离心率为$\frac{{\sqrt{2}}}{2}$,且长轴长是短轴长的$\sqrt{2}$倍.
(1)求椭圆Γ的标准方程;
(2)设P(2,0)过椭圆Γ左焦点F的直线l交Γ于A,B两点,若对满足条件的任意直线l,不等式$\overrightarrow{PA}•\overrightarrow{PB}≤λ({λ∈R})$恒成立,求λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两个焦点为F1,F2,它的两个顶点是线段F1F2的三等分点,过焦点F1且垂直于x轴的直线交双曲线于A,B两点,|AB|=16,求双曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设?x?表示不小于实数x的最小整数,如?2.6?=3,?-3.5?=-3.已知函数f(x)=?x?2-2?x?,若函数F(x)=f(x)-k(x-2)+2在(-1,4]上有2个零点,则k的取值范围是(  )
A.$[{-\frac{5}{2},-1})∪[2,5)$B.$({-\frac{4}{3},-1}]∪[5,10)$C.$[{-1,-\frac{2}{3}})∪[5,10)$D.$[{-\frac{4}{3},-1}]∪[5,10)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.己知n为正整数,数列{an}满足an>0,4(n+1)an2-nan+12=0,设数列{bn}满足bn=$\frac{{{a}_{n}}^{2}}{{t}^{n}}$
(1)求证:数列{$\frac{{a}_{n}}{\sqrt{n}}$}为等比数列;
(2)若数列{bn}是等差数列,求实数t的值:
(3)若数列{bn}是等差数列,前n项和为Sn,对任意的n∈N*,均存在m∈N*,使得8a12Sn-a14n2=16bm成立,求满足条件的所有整数a1的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设函数f(x)=|lgx|,若f(a)=f(b),其中0<a<b,则a+b取值范围是(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.《九章算术》是我国数学史上堪与欧几里得《几何原本》相媲美的数学名著.其中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的四面体称之为鳖膈.已知直三棱柱A1B1C1-ABC中,AB⊥BC,AB=3,$BC=4,A{A_1}=5\sqrt{3}$,将直三棱柱沿一条棱和两个面的对角线分割为一个阳马和一个鳖膈,则鳖膈的体积与其外接球的体积之比为(  )
A.$\sqrt{3}:15π$B.$3\sqrt{3}:5π$C.$3\sqrt{3}:50π$D.$3\sqrt{3}:25π$

查看答案和解析>>

同步练习册答案