精英家教网 > 高中数学 > 题目详情
8.设函数f(x)=$\left\{\begin{array}{l}{-|lnx|,x>0}\\{{x}^{2}+2x-1,x≤0}\end{array}\right.$,若f(a)=f(b)=f(c)=f(d),其中a,b,c,d互不相等,则对于命题p:abcd∈(0,1)和命题q:a+b+c+d∈[e+e-1-2,e2+e-2-2)真假的判断,正确的是(  )
A.p假q真B.p假q假C.p真q真D.p真q假

分析 画出函数f(x)=的图象,根据a,b,c,d互不相等,且f(a)=f(b)=f(c)=f(d),令a<b<c<d,根据对数的运算性质,及c,d的取值范围得到abcd的取值范围,再利用对勾函数的单调性求出a+b+c+d的范围得答案.

解答 解:作出函数f(x)=$\left\{\begin{array}{l}{-|lnx|,x>0}\\{{x}^{2}+2x-1,x≤0}\end{array}\right.$的图象如图,

不妨设a<b<c<d,图中实线y=m与函数f(x)的图象相交于四个不同的点,由图可知m∈(-2,-1],
则a,b是x2+2x-m-1=0的两根,∴a+b=-2,ab=-m-1,
∴ab∈[0,1),且lnc=m,lnd=-m,
∴ln(cd)=0,
∴cd=1,
∴abcd∈[0,1),故①正确;
由图可知,c∈($\frac{1}{{e}^{2}},\frac{1}{e}$],
又∵cd=1,a+b=-2,
∴a+b+c+d=c+$\frac{1}{c}$-2,在($\frac{1}{{e}^{2}}$,$\frac{1}{e}$]是递减函数,
∴a+b+c+d∈[e+$\frac{1}{e}$-2,e2+$\frac{1}{{e}^{2}}$-2),故②正确.
∴p真q真.
故选:C.

点评 本题考查命题的真假判断与应用,考查对数函数图象与性质的综合应用,其中画出函数图象,利用图象的直观性,数形结合进行解答是解决此类问题的关键,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知m,n为两条不同的直线,α,β为两个不同的平面,则下列命题中正确的有(  )
(1)m?α,n?α,m∥β,n∥β⇒α∥β
(2)n∥m,n⊥α⇒m⊥α
(3)α∥β,m?α,n?β⇒m∥n
(4)m⊥α,m⊥n⇒n∥α
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列各组函数f(x)与g(x)相同的是(  )
A.f(x)=1,g(x)=x0B.f(x)=x2,g(x)=(x+1)2
C.f(x)=x,g(x)=elnxD.f(x)=|x|,g(x)=$\left\{\begin{array}{l}{x,}&{x≥0}\\{-x,}&{x<0}\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率e=$\frac{{\sqrt{3}}}{2}$,左、右焦点分别为F1、F2,A是椭圆在第一象限上的一个动点,圆C与F1A的延长线,F1F2的延长线以及线段AF2都相切,M(2,0)为一个切点.
(1)求椭圆方程;
(2)设$N({\frac{{\sqrt{3}}}{2},0})$,过F2且不垂直于坐标轴的动点直线l交椭圆于P,Q两点,若以NP,NQ为邻边的平行四边形是菱形,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图,在△ABC中,∠BAC=60°,AB=2,AC=1,D是BC边上一点,且$\overrightarrow{CD}$=2$\overrightarrow{DB}$,则$\overrightarrow{AD}$•$\overrightarrow{BC}$ 的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知正项数列{an}的首项a1=1,且(n+1)a${\;}_{n+1}^{2}$+anan+1-na${\;}_{n}^{2}$=0对?n∈N*都成立.
(1)求{an}的通项公式;
(2)记bn=a2n-1a2n+1,数列{bn}的前n项和为Tn,证明:Tn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知关于空间两条不同直线m,n,两个不同平面α,β,有下列四个命题:①若m∥α且n∥α,则m∥n;②若m⊥β且m⊥n,则n∥β;③若m⊥α且m∥β,则α⊥β;④若n?α且m不垂直于α,则m不垂直于n.其中正确命题的序号为③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.给出下列等式:$\sqrt{2}=2cos\frac{π}{4}$,$\sqrt{2+\sqrt{2}}=2cos\frac{π}{8}$,$\sqrt{2+\sqrt{2+\sqrt{2}}}=2cos\frac{π}{16}$,…请从中归纳出第n(n∈N*)个等式:$\underbrace{\sqrt{2+\sqrt{2+…+\sqrt{2}}}}_{n个根号}$=$2cos\frac{π}{{{2^{n+1}}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某四棱台的三视图如图所示,则该四棱台的体积是(  )
A.7B.6C.5D.4

查看答案和解析>>

同步练习册答案