精英家教网 > 高中数学 > 题目详情
11.命题:?x∈R,x2≠x的否定是:?x∈R,x2=x.

分析 利用全称命题的否定是特称命题,写出结果即可.

解答 解:因为全称命题的否定是特称命题,所以,命题:?x∈R,x2≠x的否定是:?x∈R,x2=x.
故答案为:?x∈R,x2=x.

点评 本题考查命题的否定,全称命题与特称命题的否定关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.把正整数按一定的规则排成了如图所示的三角形数表,设aij(i,j∈N*)是位于这个三角形数表中从上往下数第i行,从左往右数第j个数,如a63=18,若aij=2012,则i+j=(  )
A.75B.76C.77D.78

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,角A,B,C的对边分别为a,b,c,若其面积S=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{16}$,则cos A=$\frac{4\sqrt{17}}{17}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知P为△ABC内一点,且5$\overrightarrow{AP}$-2$\overrightarrow{AB}$-$\overrightarrow{AC}$=$\overrightarrow{0}$,则△PAC的面积与△ABC的面积之比等于$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=klnx-x2,k∈R.
(Ⅰ)若f(x)在(0,1]上是增函数,求k的取值范围;
(Ⅱ)讨论函数f(x)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,ab=60$\sqrt{3}$,sinB=sinC,面积为15$\sqrt{3}$,求b.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若偶函数f(x)在[2,4]上为增函数,且有最小值0,则它在[-4,-2]上(  )
A.是减函数,有最小值0B.是增函数,有最小值0
C.是减函数,有最大值0D.是增函数,有最大值0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.若a>0,b>0,且$\frac{1}{a}$+$\frac{1}{b}$=$\sqrt{ab}$.
(1)求a2+b2的最小值;
(2)是否存在a,b,使得2a+3b=4?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知圆C:x2+(y-2)2=5,直线l:mx-y+1=0.
(1)求证:对m∈R,直线l与圆C总有两个不同交点;
(2)若圆C与直线l相交于A,B两点,求弦AB的长度.

查看答案和解析>>

同步练习册答案