精英家教网 > 高中数学 > 题目详情
16.在△ABC中,ab=60$\sqrt{3}$,sinB=sinC,面积为15$\sqrt{3}$,求b.

分析 根据三角形的面积公式S=$\frac{1}{2}$absinC和正弦定理进行解答.

解答 解:由S=$\frac{1}{2}$absinC,∴sinC=$\frac{15\sqrt{3}}{\frac{1}{2}×60\sqrt{3}}$=$\frac{1}{2}$.
又∵sinB=sinC=$\frac{1}{2}$,
∴B=C=30°.
∴A=120°.
由正弦定理得$\frac{a}{sinA}$=$\frac{b}{sinB}$,即a=$\sqrt{3}$b,
代入ab=ab=60$\sqrt{3}$,得
b=2$\sqrt{15}$.

点评 本题考查三角形的解法,正弦定理的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.极坐标系的极点为直角坐标系xOy的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,已知曲线C1的极坐标方程为ρ=2(cosθ+sinθ),曲线C2的参数方程为$\left\{\begin{array}{l}{x=2cosα}\\{y=-sinα}\end{array}\right.$ (α为参数).
(1)求曲线C1,C2的直角坐标方程;
(2)直线l:$\left\{\begin{array}{l}{x=\frac{1}{2}t}\\{y=1+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数)与曲线C1交于A,B两点,与y轴交于E,求|EA|+|EB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若关于x的不等式lnx>ax-1的解集为{x|x>2},则不等式lnx<1-$\frac{a}{x}$的解集为(  )
A.{x|x>2}B.{x|0<x<2}C.{x|x>$\frac{1}{2}$}D.{x|0<x<$\frac{1}{2}$}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.一个正整数数表如表(表中下一行中的数的个数比上一行中数的个数多两个,每行中    的数成公比为2的等比数列)则第6行的第5个数是(  )
第1行1
第2行2   4   8
第3行16  32  64  128   256
A.229B.230C.231D.232

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.命题:?x∈R,x2≠x的否定是:?x∈R,x2=x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.射手张强在一次射击中射中10环、9环、8环、7环、7环以下的概率分别是0.24、0.28、0.19、0.16、0.13.计算这个射手在一次射击中:
(1)射中10环或9环的概率;
(2)至少射中7环的概率;
(3)射中环数小于8环的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设a∈R,函数f(x)=lnx-ax.
(I) 求f(x)的单调增区间;
(Ⅱ)设F(x)=f(x)+ax2+ax,问F(x)是否存在极值,若存在,请求出极值;若存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知z1=sinθ-$\frac{4}{5}$i,z2=$\frac{3}{5}$-cosθi,若z1-z2是纯虚数,则tanθ=(  )
A.$\frac{3}{4}$B.$-\frac{3}{4}$C.$\frac{4}{3}$D.$-\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.60°角的弧度数是(  )
A.$\frac{π}{2}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

同步练习册答案