分析 根据三角形的面积公式S=$\frac{1}{2}$absinC和正弦定理进行解答.
解答 解:由S=$\frac{1}{2}$absinC,∴sinC=$\frac{15\sqrt{3}}{\frac{1}{2}×60\sqrt{3}}$=$\frac{1}{2}$.
又∵sinB=sinC=$\frac{1}{2}$,
∴B=C=30°.
∴A=120°.
由正弦定理得$\frac{a}{sinA}$=$\frac{b}{sinB}$,即a=$\sqrt{3}$b,
代入ab=ab=60$\sqrt{3}$,得
b=2$\sqrt{15}$.
点评 本题考查三角形的解法,正弦定理的应用,考查计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|x>2} | B. | {x|0<x<2} | C. | {x|x>$\frac{1}{2}$} | D. | {x|0<x<$\frac{1}{2}$} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 第1行 | 1 |
| 第2行 | 2 4 8 |
| 第3行 | 16 32 64 128 256 |
| … | … |
| A. | 229 | B. | 230 | C. | 231 | D. | 232 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{4}$ | B. | $-\frac{3}{4}$ | C. | $\frac{4}{3}$ | D. | $-\frac{4}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{2}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com