分析 由已知利用同角三角函数基本关系式可求sinC,由正弦定理可得b,利用三角形内角和定理,两角和的正弦函数公式可求sinA,进而利用正弦定理即可解得a的值.
解答 解:∵∠B=60°,cosC=$\frac{1}{3}$,c=4$\sqrt{2}$,可得:sinC=$\sqrt{1-co{s}^{2}C}$=$\frac{2\sqrt{2}}{3}$,
∴由正弦定理可得:b=$\frac{csinB}{sinC}$=$\frac{4\sqrt{2}×\frac{\sqrt{3}}{2}}{\frac{2\sqrt{2}}{3}}$=3$\sqrt{3}$,
又∵sinA=sin(B+C)=sinBcosC+cosBsinC=$\frac{\sqrt{3}}{2}$×$\frac{1}{3}$+$\frac{1}{2}×$$\frac{2\sqrt{2}}{3}$=$\frac{\sqrt{3}+2\sqrt{2}}{6}$,
∴a=$\frac{bsinA}{sinB}$=$\frac{3\sqrt{3}×\frac{\sqrt{3}+2\sqrt{2}}{6}}{\frac{\sqrt{3}}{2}}$=$\sqrt{3}+2\sqrt{2}$.
点评 本题主要考查了同角三角函数基本关系式,正弦定理,三角形内角和定理,两角和的正弦函数公式在解三角形中的应用,考查了转化思想和计算能力,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 向左平移$\frac{π}{3}$个单位 | B. | 向右平移$\frac{π}{3}$个单位 | ||
| C. | 向左平移$\frac{π}{6}$个单位 | D. | 向右平移$\frac{π}{6}$个单位 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{6}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com