精英家教网 > 高中数学 > 题目详情
16.“设RT△ABC的两边AB,AC互相垂直,则AB2+AC2=BC2”拓展到空间,类比平面几何的勾股定理,在立体几何中,可得类似的结论是“设三棱锥A-BCD中三边AB、AC、AD两两互相垂直,则$S_{△ABC}^2+S_{△ACD}^2+S_{△ADB}^2=S_{△BCD}^2$”.

分析 斜边的平方等于两个直角边的平方和,可类比到空间就是斜面面积的平方等于三个直角面的面积的平方和,边对应着面.

解答 解:由边对应着面,边长对应着面积,由类比可得SBCD2=SABC2+SACD2+SADB2
故答案为:SBCD2=SABC2+SACD2+SADB2

点评 本题考查了从平面类比到空间,属于基本类比推理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知对任意实数x,有(m+x)(1+x)6=a0+a1x+a2x2+…+a7x7,若a1+a3+a5+a7=32,则m=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在研究色盲与性别的关系调查中,调查了男性480人,其中有38人患色盲,调查的520个女性中6人患色盲,根据以上的数据得到一个2×2的列联表
 患色盲不患色盲总计
  480
  520
总计  1000
(Ⅰ)请根据以上的数据完成这个2×2的列联表;
(Ⅱ)若认为“性别与患色盲有关系”,则出错的概率会是多少?
参考数据:$\frac{{(38×514.442×6)}^{2}}{480×520×44×956}$=0.02714;$\frac{{(38×6.442×514)}^{2}}{480×520×44×956}$=4.90618;$\frac{{(38×442.6×514)}^{2}}{480×520×44×956}$=0.01791.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.等差数列{an}中,a${\;}_{7}^{2}$=a3+a11,{bn}为等比数列,且b7=a7,则b6b8的值为(  )
A.4B.2C.16D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列函数中,满足“f(x+y)=f(x)f(y)”的单调递增函数是(  )
A.f(x)=2xB.f(x)=3xC.$f(x)={(\frac{1}{2})^x}$D.f(x)=lgx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.直线y=kx+1与圆(x-2)2+(y-1)2=4相交于P、Q两点.若|PQ|$≥2\sqrt{2}$,则k的取值范围是(  )
A.$[-\frac{3}{4},0]$B.$[-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}]$C.[-1,1]D.$[-\sqrt{3},\sqrt{3}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在四面体ABCD中,△ABC与△DBC都是边长为4的正三角形.求证:BC⊥AD

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知f(x)=2x-4,g(x)=x2,则y=f(g(x))的零点为(  )
A.$\sqrt{2}$B.$±\sqrt{2}$C.$\frac{{\sqrt{2}}}{2}$D.$±\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知a,b为实数,若|a|≤1,则代数式a2+b2+(a2+2-$\sqrt{1-{b}^{2}}$)2-2ab的取值范围是$[1,11-2\sqrt{10}]$.

查看答案和解析>>

同步练习册答案