精英家教网 > 高中数学 > 题目详情

【题目】世界那么大,我想去看看,每年高考结束后,处于休养状态的高中毕业生旅游动机强烈,旅游可支配收入日益增多,可见高中毕业生旅游是一个巨大的市场.为了解高中毕业生每年旅游消费支出(单位:百元)的情况,相关部门随机抽取了某市的1000名毕业生进行问卷调查,并把所得数据列成如下所示的频数分布表:

组别

频数

(1)求所得样本的中位数(精确到百元);

(2)根据样本数据,可近似地认为学生的旅游费用支出服从正态分布,若该市共有高中毕业生35000人,试估计有多少位同学旅游费用支出在 8100元以上;

(3)已知本数据中旅游费用支出在范围内的8名学生中有5名女生,3名男生, 现想选其中3名学生回访,记选出的男生人数为,求的分布列与数学期望.

附:若,则.

【答案】(1)(百元);(2);(3).

【解析】试题分析:(1)根据中位数定义列式解得中位数,(2)由正态分布得旅游费用支出在元以上的概率为,再根据频数等于总数与频率乘积得人数.(3)先确定随机变量取法,再利用组合数分别求对应概率,列表可得分布列,最后根据数学期望公式求期望.

试题解析:(1)设样本的中位数为,则

解得,所得样本中位数为(百元).

(2)

旅游费用支出在元以上的概率为

估计有位同学旅游费用支出在元以上.

(3)的可能取值为

的分布列为

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”.为了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从网上年龄在15~65岁的人群中随机调查100人,调查数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:

(1)由以上统计数据填列联表,并判断能否在犯错误的概率不超过0.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异;

(2)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动.现从这8人中随机抽2人.

①抽到1人是45岁以下时,求抽到的另一人是45岁以上的概率.

②记抽到45岁以上的人数为,求随机变量的分布列及数学期望.

参考数据:

,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面(由扇形挖去扇形后构成的).已知,线段与弧的长度之和为米,圆心角为弧度.

(1)关于的函数解析式;

(2)记铭牌的截面面积为,试问取何值时,的值最大?并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求实数的值;

(2)令上的最小值为,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知四边形是直角梯形,,其中上的一点,四边形是菱形,满足,沿折起,使

(1)求证:平面平面

(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若的图象在点处的切线方程为,求在区间[-2,4]上的最大值;

(2)当时,若在区间(-1,1)上不单调,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】唐三彩,中国古代陶瓷烧制工艺的珍品,它吸取了中国国画、雕塑等工艺美术的特点,在中国文化中占有重要的历史地位,在中国的陶瓷史上留下了浓墨重彩的一笔.唐三彩的生产至今已有1300多年的历史,对唐三彩的复制和仿制工艺,至今也有百余年的历史,某陶瓷厂在生产过程中,对仿制100件工艺品测得其重量(单位:) 数据,将数据分组如下表:

(1)统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值是2.25)作为代表.据此,估计这100个数据的平均值;

(2)根据样本数据,以频率作为槪率,若该陶瓷厂生产这样的工艺品5000件,试估计重量落在中的件数;

(3)从第一组和第六组6件工艺品中随机抽取2个工艺品,求一个来自第一组,一个来自第六组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,过的直线与椭圆交于两点,的周长为.

(1)求椭圆的方程;

(2)如图,点,分别是椭圆的左顶点、左焦点,直线与椭圆交于不同的两点都在轴上方).且.证明:直线过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为平行四边形, ,且底面.

(1)证明:平面平面

(2)若的中点,且,求二面角的大小.

查看答案和解析>>

同步练习册答案