精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左、右焦点分别为,过的直线与椭圆交于两点,的周长为.

(1)求椭圆的方程;

(2)如图,点,分别是椭圆的左顶点、左焦点,直线与椭圆交于不同的两点都在轴上方).且.证明:直线过定点,并求出该定点的坐标.

【答案】(1)(2)

【解析】

1)由题意,知,可知 由椭圆的定义知,的周长为,进而求解;(2)设直线和椭圆联立得到二次方程,,∴,进而转化为代数关系,整理可得根据韦达定理,整理上式得到,从而求解.

(1)设椭圆的焦距为,由题意,知,可知

由椭圆的定义知,的周长为,∴,故

∴椭圆的方程为

(2)由题意知,直线的斜率存在且不为0。设直线

把直线代入椭圆方程,整理可得,,即

都在轴上方.且,∴

,即,代入

整理可得

,整理可得

∴直线,∴直线过定点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中,.直角梯形通过直角梯形以直线为轴旋转得到,且使得平面平面.

(Ⅰ)求证:平面平面

(Ⅱ)延长至点,使为平面内的动点,若直线与平面所成的角为,且,求点到点的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】世界那么大,我想去看看,每年高考结束后,处于休养状态的高中毕业生旅游动机强烈,旅游可支配收入日益增多,可见高中毕业生旅游是一个巨大的市场.为了解高中毕业生每年旅游消费支出(单位:百元)的情况,相关部门随机抽取了某市的1000名毕业生进行问卷调查,并把所得数据列成如下所示的频数分布表:

组别

频数

(1)求所得样本的中位数(精确到百元);

(2)根据样本数据,可近似地认为学生的旅游费用支出服从正态分布,若该市共有高中毕业生35000人,试估计有多少位同学旅游费用支出在 8100元以上;

(3)已知本数据中旅游费用支出在范围内的8名学生中有5名女生,3名男生, 现想选其中3名学生回访,记选出的男生人数为,求的分布列与数学期望.

附:若,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,若椭圆上一点满足,过点的直线与椭圆交于两点.

(1)求椭圆的方程;

(2)过点轴的垂线,交椭圆,求证:存在实数,使得.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知21),17),51),设C是直线OP上的一点(其中O为坐标原点)

1)求使取到最小值时的

2)根据(1)中求出的点C,求cosACB

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点分别是椭圆 的长轴端点、短轴端点,为坐标原点,若.

(1)求椭圆的标准方程;

(2)如果斜率为的直线交椭圆于不同的两点 (都不同于点),线段的中点为,设线段的垂线的斜率为,试探求之间的数量关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数与函数的零点情况;

(2)若对任意恒成立,求实数的取值范围.

注:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线.

(1)求曲线被直线截得的弦长;

(2)与直线垂直的直线与曲线相切于点,求点的直线坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知偶函数的定义域为,值域为

(1)求实数的值;

(2)若,求实数的值;

(3)若,求的值.

查看答案和解析>>

同步练习册答案