【题目】已知椭圆的左、右焦点分别为,,过的直线与椭圆交于两点,的周长为.
(1)求椭圆的方程;
(2)如图,点,分别是椭圆的左顶点、左焦点,直线与椭圆交于不同的两点、(、都在轴上方).且.证明:直线过定点,并求出该定点的坐标.
科目:高中数学 来源: 题型:
【题目】如图,在直角梯形中,.直角梯形通过直角梯形以直线为轴旋转得到,且使得平面平面.
(Ⅰ)求证:平面平面;
(Ⅱ)延长至点,使为平面内的动点,若直线与平面所成的角为,且,求点到点的距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】世界那么大,我想去看看,每年高考结束后,处于休养状态的高中毕业生旅游动机强烈,旅游可支配收入日益增多,可见高中毕业生旅游是一个巨大的市场.为了解高中毕业生每年旅游消费支出(单位:百元)的情况,相关部门随机抽取了某市的1000名毕业生进行问卷调查,并把所得数据列成如下所示的频数分布表:
组别 | |||||
频数 |
(1)求所得样本的中位数(精确到百元);
(2)根据样本数据,可近似地认为学生的旅游费用支出服从正态分布,若该市共有高中毕业生35000人,试估计有多少位同学旅游费用支出在 8100元以上;
(3)已知本数据中旅游费用支出在范围内的8名学生中有5名女生,3名男生, 现想选其中3名学生回访,记选出的男生人数为,求的分布列与数学期望.
附:若,则,,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左右焦点分别为,若椭圆上一点满足,过点的直线与椭圆交于两点.
(1)求椭圆的方程;
(2)过点作轴的垂线,交椭圆于,求证:存在实数,使得.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知(2,1),(1,7),(5,1),设C是直线OP上的一点(其中O为坐标原点)
(1)求使取到最小值时的;
(2)根据(1)中求出的点C,求cos∠ACB.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点,分别是椭圆 的长轴端点、短轴端点,为坐标原点,若,.
(1)求椭圆的标准方程;
(2)如果斜率为的直线交椭圆于不同的两点 (都不同于点),线段的中点为,设线段的垂线的斜率为,试探求与之间的数量关系.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线(为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线.
(1)求曲线被直线截得的弦长;
(2)与直线垂直的直线与曲线相切于点,求点的直线坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com