【题目】如图所示,已知四边形
是直角梯形,
,
,其中
是
上的一点,四边形
是菱形,满足
,沿
将
折起,使![]()
(1)求证:平面
平面![]()
(2)求三棱锥
的体积.
![]()
【答案】(1)证明见解析;(2)
.
【解析】试题分析:
(1)取
的中点
,取
的中点
,连接
和
,
和
,由题意结合等腰三角形的性质可得
,
,结合线面垂直的判断定理有
面
,
,而
,所以
平面
,结合面面垂直的判断定理可得平面
平面
.
(2)由题意结合(1)可知
为三棱锥
的底面
的高,转化顶点计算可得三棱锥的体积
.
试题解析:
(1)如图,取
的中点
,取
的中点
,连接
和
,
和
,由题意知:
,
是等腰三角形,
,
是等腰三角形,
则有
,
,
分别为
和
的中点,
可得:
,而
,
,
所以
面
,可得,
,
面
,
,
平面
,且
与
不平行,所以
平面
,
而
平面
,所以平面
平面
.
![]()
(2)三棱锥
的体积,即为三棱锥
的体积,由(1)知,
平面
,从而
为三棱锥
的底面
的高,
为直角三角形,
,可得
,而
,从而
,由题意知:
,从而
,
是等腰三角形,且
,
为
的中点,且
,
,
,故
.
科目:高中数学 来源: 题型:
【题目】第23届冬季奥运会于2018年2月9日至2月25日在韩国平昌举行,期间正值我市学校放寒假,寒假结束后,某校工会对全校教职工在冬季奥运会期间每天收看比赛转播的时间作了一次调查,得到如下频数分布表:
收看时间(单位:小时) |
|
|
|
|
|
|
收看人数 | 14 | 30 | 16 | 28 | 20 | 12 |
(1)若将每天收看比赛转播时间不低于3小时的教职工定义为“体育达人”,否则定义为“非体育达人”,请根据频数分布表补全
列联表:
| 男 | 女 | 合计 |
体育达人 | 40 | ||
非体育达人 | 30 | ||
合计 |
并判断能否有
的把握认为该校教职工是否为“体育达人”与“性别”有关;
(2)在全校“体育达人”中按性别分层抽样抽取6名,再从这6名“体育达人”中选取2名作冬奥会知识讲座.记其中女职工的人数为
,求的
分布列与数学期望.
附表及公式:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】世界那么大,我想去看看,每年高考结束后,处于休养状态的高中毕业生旅游动机强烈,旅游可支配收入日益增多,可见高中毕业生旅游是一个巨大的市场.为了解高中毕业生每年旅游消费支出(单位:百元)的情况,相关部门随机抽取了某市的1000名毕业生进行问卷调查,并把所得数据列成如下所示的频数分布表:
组别 |
|
|
|
|
|
频数 |
|
|
|
|
|
(1)求所得样本的中位数(精确到百元);
(2)根据样本数据,可近似地认为学生的旅游费用支出
服从正态分布
,若该市共有高中毕业生35000人,试估计有多少位同学旅游费用支出在 8100元以上;
(3)已知本数据中旅游费用支出在
范围内的8名学生中有5名女生,3名男生, 现想选其中3名学生回访,记选出的男生人数为
,求
的分布列与数学期望.
附:若
,则
,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数y=f(x)=-x3+ax2+b(a,b∈R).
(1)当a>0时,若f(x)满足:y极小值=1,y极大值=
,试求f(x)的解析式;
(2)若x∈[0,1]时,y=f(x)图象上的任意一点处的切线斜率k满足:|k|≤1,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
(2,1),
(1,7),
(5,1),设C是直线OP上的一点(其中O为坐标原点)
(1)求使
取到最小值时的
;
(2)根据(1)中求出的点C,求cos∠ACB.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城镇社区为了丰富辖区内广大居民的业余文化生活,创建了社区“文化丹青”大型活动场所,配备了各种文化娱乐活动所需要的设施,让广大居民健康生活、积极向上.社区最近四年内在“文化丹青”上的投资金额统计数据如表:(为了便于计算,把2015年简记为5,其余以此类推)
年份 | 5 | 6 | 7 | 8 |
投资金额 | 15 | 17 | 21 | 27 |
(1)利用所给数据,求出投资金额
与年份
之间的回归直线方程
;
(2)预测该社区在2019年在“文化丹青”上的投资金额.
(附:对于一组数据
,
,…,
,其回归直线
的斜率和截距的最小二乘估计分别为
,
.)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com