【题目】已知函数
(1)若
的图象在点
处的切线方程为
,求
在区间[-2,4]上的最大值;
(2)当
时,若
在区间(-1,1)上不单调,求
的取值范围.
【答案】.解:(Ⅰ)
…………………………………………1分
………………………………2分
∴a=0或2. ………………………………………………………………………4分
(Ⅱ)∵(1,f(1))是切点,∴1+f(1)-3=0, ∴f(1)=2…………………5分
![]()
∵切线方程x+y-3=0的斜率为-1,
……………………………7分
![]()
…………8分
……………………………………9分
∴y=f(x)在区间[-2,4]上的最大值为8. …………………………………………10分
(Ⅲ)因为函数f(x)在区间(-1,1)不单调,所以函数
在(-1,1)上存在零点.
而
=0的两根为a-1,a+1,区间长为2,
∴在区间(-1,1)上不可能有2个零点. ……………………………11分
………………………………12分
![]()
……………………………………………14分
【解析】
(1)先利用
的图象在点
处的切线方程为
求出
,再求函数
在区间
上的最大值.(2)由题得
得
或
,再解不等式
或
得解.
(1)由已知得
,
,
,
,
令
, 得
或2,
又
,
,
.
(2)
得
或
,
若
在
上不单调,则
在
上有解,
或
,
或
.
科目:高中数学 来源: 题型:
【题目】如图,某污水处理厂要在一个矩形污水处理池
的池底水平铺设污水净化管道(
,H是直角顶点)来处理污水,管道越短,铺设管道的成本越低.设计要求管道的接口H是
的中点,点E,F分别落在线段
上.已知
,记
.
![]()
(1)试将污水管道的长度表示为
的函数,并写出定义域;
(2)已知
,求此时管道的长度l;
(3)当
取何值时,铺设管道的成本最低?并求出此时管道的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:若数列
和
满足
则称数列
是数列
的“伴随数列”.
已知数列
是数列
的伴随数列,试解答下列问题:
(1)若
,
,求数列
的通项公式
;
(2)若
,
为常数,求证:数列
是等差数列;
(3)若
,数列
是等比数列,求
的数值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设三次函数f(x)=ax3+bx2+cx+1的导函数为f
(x)=3ax(x-2),若函数y=f(x)共有三个不同的零点,则a的取值范围是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】世界那么大,我想去看看,每年高考结束后,处于休养状态的高中毕业生旅游动机强烈,旅游可支配收入日益增多,可见高中毕业生旅游是一个巨大的市场.为了解高中毕业生每年旅游消费支出(单位:百元)的情况,相关部门随机抽取了某市的1000名毕业生进行问卷调查,并把所得数据列成如下所示的频数分布表:
组别 |
|
|
|
|
|
频数 |
|
|
|
|
|
(1)求所得样本的中位数(精确到百元);
(2)根据样本数据,可近似地认为学生的旅游费用支出
服从正态分布
,若该市共有高中毕业生35000人,试估计有多少位同学旅游费用支出在 8100元以上;
(3)已知本数据中旅游费用支出在
范围内的8名学生中有5名女生,3名男生, 现想选其中3名学生回访,记选出的男生人数为
,求
的分布列与数学期望.
附:若
,则
,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面四边形ABCD中,已知A=
,B=
,AB=6.在AB边上取点E,使得BE=1,连接EC,ED.若∠CED=
,EC=
.
![]()
(1)求sin∠BCE的值;
(2)求CD的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左右焦点分别为
,若椭圆上一点
满足
,过点
的直线
与椭圆
交于两点
.
(1)求椭圆
的方程;
(2)过点
作
轴的垂线,交椭圆
于
,求证:存在实数
,使得
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
,
分别是椭圆
的长轴端点、短轴端点,
为坐标原点,若
,
.
(1)求椭圆
的标准方程;
(2)如果斜率为
的直线
交椭圆
于不同的两点
(都不同于点
),线段
的中点为
,设线段
的垂线
的斜率为
,试探求
与
之间的数量关系.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com