精英家教网 > 高中数学 > 题目详情

【题目】定义:若数列满足则称数列是数列的“伴随数列”.

已知数列是数列的伴随数列,试解答下列问题:

(1)若,求数列的通项公式

(2)若为常数,求证:数列是等差数列;

(3)若,数列是等比数列,求的数值.

【答案】(1);(2)证明见解析;(3).

【解析】试题分析:(1)根据题意,由,代入.

可求得

(2) 代入

可得即可证明数列是首项为公差为的等差数列.

(3).由题意可得). 是等比数列,且,设公比为,则.

可证明当, 和时均不成立.故 ().

根据数列是等比数列,有..根据

可化为

. 可知关于的一元二次方程有且仅有两个非负实数根.可证明. ,得. ,代入可得..

试题解析:(1)根据题意,有.

,得

.

所以

(2)

,/span>

∴数列是首项为、公差为的等差数列.

(3)

,得.

是等比数列,且,设公比为,则.

∴当,即,与矛盾.因此,不成立.

,即,与矛盾.因此,不成立.

,即数列是常数列,于是,().

.

,数列也是等比数列,设公比为,有.

可化为

.

关于的一元二次方程有且仅有两个非负实数根.

一方面,()是方程的根;另一方面,

,则无穷多个互不相等的 都是该二次方程的根.这与该二次方程有且仅有两个非负实数根矛盾!

,即数列也是常数列,于是,.

  ,得.

,代入解得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】1)要得到的图像,只需要把函数的图像上的对应点的横坐标_________,纵坐标_________

2)要得到的图像,只需要把函数的图像上的对应点的横坐标_________,纵坐标___________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司招聘员工,先由两位专家面试,若两位专家都同意通过,则视作通过初审予以录用;若两位专家都未同意通过,则视作未通过初审不予录用;当这两位专家意见不一致时,再由第三位专家进行复审,若能通过复审则予以录用,否则不予录用.设应聘人员获得每位初审专家通过的概率为0.5,复审能通过的概率为0.3,各专家评审的结果相互独立.

(Ⅰ)求某应聘人员被录用的概率;

(Ⅱ)若4人应聘,设X为被录用的人数,试求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着人们经济收入的不断增长,个人购买家庭轿车已不再是一种时尚车的使用费用,尤其是随着使用年限的增多,所支出的费用到底会增长多少,一直是购车一族非常关心的问题某汽车销售公司作了一次抽样调查,并统计得出某款车的使用年限与所支出的总费用(万元)有如表的数据资料:

使用年限

2

3

4

5

6

总费用

2.2

3.8

5.5

6.5

7.0

(1) 在给出的坐标系中作出散点图;

(2)求线性回归方程中的

(3)估计使用年限为年时,车的使用总费用是多少?

(最小二乘法求线性回归方程系数公式.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面(由扇形挖去扇形后构成的).已知,线段与弧的长度之和为米,圆心角为弧度.

(1)关于的函数解析式;

(2)记铭牌的截面面积为,试问取何值时,的值最大?并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆关于直线对称的圆为

(1)求圆C的方程;

(2)过点(1,0)作直线l与圆C交于A,B两点,O是坐标原点,是否存在直线l,使得∠AOB=90°?若存在,求出所有满足条件的直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求实数的值;

(2)令上的最小值为,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若的图象在点处的切线方程为,求在区间[-2,4]上的最大值;

(2)当时,若在区间(-1,1)上不单调,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中小学生的视力状况受到社会的广泛关注,某市有关部门从全市6万名高一学生中随机抽取了400名,对他们的视力状况进行一次调查统计,将所得到的有关数据绘制成频率分布直方图,如图所示.从左至右五个小组的频率之比依次是.

1)抽取的400名学生中视力在范围内的学生约有多少人?

2)如果视力达到5.0以上算正常,用样本估计总体,求全市高一学生中视力正常的学生有多少人?

3)从第4组和第5组的学生中按分层抽样的方式抽取样本容量为8人的样本,再从样本中随机抽取2人进行问卷调查,请求出2人来自同一组的概率.

查看答案和解析>>

同步练习册答案