【题目】定义:若数列和满足则称数列是数列的“伴随数列”.
已知数列是数列的伴随数列,试解答下列问题:
(1)若,,求数列的通项公式;
(2)若,为常数,求证:数列是等差数列;
(3)若,数列是等比数列,求的数值.
【答案】(1);(2)证明见解析;(3).
【解析】试题分析:(1)根据题意,由,,代入.
可求得,.
(2)由 ,代入,
可得,.即可证明数列是首项为公差为的等差数列.
(3).由题意可得). 由是等比数列,且,设公比为,则.
可证明当, 和时均不成立.故 ,().
根据数列是等比数列,有..根据
可化为
,. 可知关于的一元二次方程有且仅有两个非负实数根.可证明,,. 由,得. 把,代入可得..
试题解析:(1)根据题意,有.
由,,得
,.
所以,.
(2) ,,
∴,,/span>.
∴,.
∴数列是首项为、公差为的等差数列.
(3) , ,
由,得.
是等比数列,且,设公比为,则.
∴当,即,与矛盾.因此,不成立.
当,即,与矛盾.因此,不成立.
,即数列是常数列,于是,().
.
,数列也是等比数列,设公比为,有.
可化为
,.
,
关于的一元二次方程有且仅有两个非负实数根.
一方面,()是方程的根;另一方面,
若,则无穷多个互不相等的 都是该二次方程的根.这与该二次方程有且仅有两个非负实数根矛盾!
,即数列也是常数列,于是,,.
由,得.
把,代入解得. .
科目:高中数学 来源: 题型:
【题目】(1)要得到的图像,只需要把函数的图像上的对应点的横坐标_________,纵坐标_________;
(2)要得到的图像,只需要把函数的图像上的对应点的横坐标_________,纵坐标___________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司招聘员工,先由两位专家面试,若两位专家都同意通过,则视作通过初审予以录用;若两位专家都未同意通过,则视作未通过初审不予录用;当这两位专家意见不一致时,再由第三位专家进行复审,若能通过复审则予以录用,否则不予录用.设应聘人员获得每位初审专家通过的概率为0.5,复审能通过的概率为0.3,各专家评审的结果相互独立.
(Ⅰ)求某应聘人员被录用的概率;
(Ⅱ)若4人应聘,设X为被录用的人数,试求随机变量X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着人们经济收入的不断增长,个人购买家庭轿车已不再是一种时尚车的使用费用,尤其是随着使用年限的增多,所支出的费用到底会增长多少,一直是购车一族非常关心的问题某汽车销售公司作了一次抽样调查,并统计得出某款车的使用年限与所支出的总费用(万元)有如表的数据资料:
使用年限 | 2 | 3 | 4 | 5 | 6 |
总费用 | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1) 在给出的坐标系中作出散点图;
(2)求线性回归方程中的、;
(3)估计使用年限为年时,车的使用总费用是多少?
(最小二乘法求线性回归方程系数公式, .)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面(由扇形挖去扇形后构成的).已知,线段与弧、弧的长度之和为米,圆心角为弧度.
(1)求关于的函数解析式;
(2)记铭牌的截面面积为,试问取何值时,的值最大?并求出最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆关于直线对称的圆为.
(1)求圆C的方程;
(2)过点(1,0)作直线l与圆C交于A,B两点,O是坐标原点,是否存在直线l,使得∠AOB=90°?若存在,求出所有满足条件的直线l的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中小学生的视力状况受到社会的广泛关注,某市有关部门从全市6万名高一学生中随机抽取了400名,对他们的视力状况进行一次调查统计,将所得到的有关数据绘制成频率分布直方图,如图所示.从左至右五个小组的频率之比依次是.
(1)抽取的400名学生中视力在范围内的学生约有多少人?
(2)如果视力达到5.0以上算正常,用样本估计总体,求全市高一学生中视力正常的学生有多少人?
(3)从第4组和第5组的学生中按分层抽样的方式抽取样本容量为8人的样本,再从样本中随机抽取2人进行问卷调查,请求出2人来自同一组的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com