【题目】随着人们经济收入的不断增长,个人购买家庭轿车已不再是一种时尚车的使用费用,尤其是随着使用年限的增多,所支出的费用到底会增长多少,一直是购车一族非常关心的问题某汽车销售公司作了一次抽样调查,并统计得出某款车的使用年限
与所支出的总费用
(万元)有如表的数据资料:
使用年限 | 2 | 3 | 4 | 5 | 6 |
总费用 | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1) 在给出的坐标系中作出散点图;
![]()
(2)求线性回归方程
中的
、
;
(3)估计使用年限为
年时,车的使用总费用是多少?
(最小二乘法求线性回归方程系数公式
,
.)
科目:高中数学 来源: 题型:
【题目】在某校组织的高二女子排球比赛中,有
、
两个球队进入决赛,决赛采用7局4胜制.假设
、
两队在每场比赛中获胜的概率都是
.并记需要比赛的场数为
.
(Ⅰ)求
大于4的概率;
(Ⅱ)求
的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某污水处理厂要在一个矩形污水处理池
的池底水平铺设污水净化管道(
,H是直角顶点)来处理污水,管道越短,铺设管道的成本越低.设计要求管道的接口H是
的中点,点E,F分别落在线段
上.已知
,记
.
![]()
(1)试将污水管道的长度表示为
的函数,并写出定义域;
(2)已知
,求此时管道的长度l;
(3)当
取何值时,铺设管道的成本最低?并求出此时管道的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的左右焦点分别为
,
,离心率
,短轴长为
.
(1)求椭圆
的标准方程;
(2)过
的直线
与椭圆
交于不同的两点
,
,则
的面积是否存在最大值?若存在,求出这个最大值及直线
的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直角梯形
中,
.直角梯形
通过直角梯形
以直线
为轴旋转得到,且使得平面
平面
.
(Ⅰ)求证:平面
平面
;
(Ⅱ)延长
至点
,使
为平面
内的动点,若直线
与平面
所成的角为
,且
,求点
到点
的距离的最小值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:若数列
和
满足
则称数列
是数列
的“伴随数列”.
已知数列
是数列
的伴随数列,试解答下列问题:
(1)若
,
,求数列
的通项公式
;
(2)若
,
为常数,求证:数列
是等差数列;
(3)若
,数列
是等比数列,求
的数值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设三次函数f(x)=ax3+bx2+cx+1的导函数为f
(x)=3ax(x-2),若函数y=f(x)共有三个不同的零点,则a的取值范围是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
,
分别是椭圆
的长轴端点、短轴端点,
为坐标原点,若
,
.
(1)求椭圆
的标准方程;
(2)如果斜率为
的直线
交椭圆
于不同的两点
(都不同于点
),线段
的中点为
,设线段
的垂线
的斜率为
,试探求
与
之间的数量关系.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com