精英家教网 > 高中数学 > 题目详情
12.已知函数y=f(x-1)定义域是[-2,3],则y=f(2x+1)的定义域是(  )
A.$[-2,\frac{1}{2}]$B.[-1,4]C.$[-\frac{5}{2},\frac{5}{2}]$D.[-3,7]

分析 根据复合函数定义域之间的关系进行求解即可.

解答 解:∵y=f(x-1)定义域是[-2,3],
∴-2≤x≤3,
则-3≤x-1≤2,
即函数f(x)的定义域为[-3,2],
由-3≤2x+1≤2,
得-4≤2x≤1,
解得-2≤x≤$\frac{1}{2}$,
即函数y=f(2x+1)的定义域[-2,$\frac{1}{2}$],
故选:A

点评 本题主要考查函数的定义域的求解,要求熟练掌握复合函数定义域之间的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.函数y=$\frac{1}{x}$-x的图象只可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知f(x+2)是偶函数,且函数f(x)在[2,+∞)上是单调递增,则(  )
A.f(3)>f(0)B.f(3)>f(1)C.f(0)<f(1)D.f(4)>f(1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.给出下列命题:
①不存在实数α,使$sinα+cosα=\frac{3}{2}$ 
②$(\overrightarrow a•\overrightarrow b)\overrightarrow c=\overrightarrow a(\overrightarrow b•\overrightarrow c)$;
③若向量$\overrightarrow{a}$、$\overrightarrow{b}$不共线,且向量$\overrightarrow{a}$+λ$\overrightarrow{b}$与$\overrightarrow{b}$+λ$\overrightarrow{a}$的方向相反,则λ=-1;
④函数y=tanx在第三象限内是单调递增的
其中正确命题的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知f(x)=$\left\{\begin{array}{l}{x,x≥0}\\{1,x<0}\end{array}\right.$.则不等式f(x2)>f(3-2x)的解集为(  )
A.(-∞,-1)∪(1,+∞)B.(-∞,-3)∪(1,+∞)C.(-∞,-3)∪($\frac{1}{2}$,+∞)D.(-∞,-1)∪($\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x+1)是定义在R上的奇函数,若对于任意给定的不等实数x1,x2,不等式(x1-x2)[f(x1)-f(x2)]>0恒成立,则不等式f(1-x)<0的解集为(  )
A.(1,+∞)B.(0,+∞)C.(-∞,0)D.(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=|x+1|+|x-2|.
(1)解不等式f(x)<5;
(2)求函数y=f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知各项均为正数的数列{an}的前n项和为Sn,且2Sn=4an-1.在数列{bn}中,bn+1=bn-2,b4+b8=-16.
(Ⅰ)求an,bn
(Ⅱ)设cn=$\frac{{b}_{n}}{{a}_{n}}$求数列{cn}的前项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,sinA;sinB:sinC=2:3:4,则cosA:cosB:cosC=(  )
A.2:3:4B.14:11:(-4)C.4:3:2D.7:11:(-2)

查看答案和解析>>

同步练习册答案