精英家教网 > 高中数学 > 题目详情
2.已知各项均为正数的数列{an}的前n项和为Sn,且2Sn=4an-1.在数列{bn}中,bn+1=bn-2,b4+b8=-16.
(Ⅰ)求an,bn
(Ⅱ)设cn=$\frac{{b}_{n}}{{a}_{n}}$求数列{cn}的前项和Tn

分析 (Ⅰ)通过2Sn=4an-1可知2an=Sn+$\frac{1}{2}$,易知${a_1}=\frac{1}{2}$,当n≥2时利用an=Sn-Sn-1可知$\frac{{a}_{n}}{{a}_{n-1}}$=2,进而可得数列{an}的通项公式,利用b4+b8=2b6计算可得数列{bn}的通项公式;
(Ⅱ)通过an=2n-2、bn=4-2n可知cn=$\frac{16-8n}{{2}^{n}}$,利用错位相减法计算即得结论.

解答 解:(Ⅰ)∵2Sn=4an-1,
∴2an=Sn+$\frac{1}{2}$,
当n=1时,${a_1}=\frac{1}{2}$;
当n≥2时,an=Sn-Sn-1=2an-2an-1
整理得:$\frac{{a}_{n}}{{a}_{n-1}}$=2,
∴数列{an}是以$\frac{1}{2}$为首项,2为公比的等比数列,
∴an=a1•qn-1=$\frac{1}{2}•{2}^{n-1}$=2n-2
∵bn+1=bn-2,
∴d=bn+1-bn=-2,
又∵b4+b8=2b6=-16,
∴b6=-8,
∴b1=b6-5d=-8-5•(-2)=2,
∴bn=b1+(n-1)d=2-2(n-1)=4-2n;
(Ⅱ)∵an=2n-2,bn=4-2n,
∴cn=$\frac{{b}_{n}}{{a}_{n}}$=$\frac{4-2n}{{2}^{n-2}}$=$\frac{16-8n}{{2}^{n}}$,
∴Tn=8•$\frac{1}{2}$+0•$\frac{1}{{2}^{2}}$+(-8)•$\frac{1}{{2}^{3}}$+…+(24-8n)•$\frac{1}{{2}^{n-1}}$+(16-8n)•$\frac{1}{{2}^{n}}$,
$\frac{1}{2}$Tn=8•$\frac{1}{{2}^{2}}$+0•$\frac{1}{{2}^{3}}$+…+(24-8n)•$\frac{1}{{2}^{n}}$+(16-8n)•$\frac{1}{{2}^{n+1}}$,
两式相减得:$\frac{1}{2}$Tn=4-8($\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n}}$)-(16-8n)•$\frac{1}{{2}^{n+1}}$
=4-8•$\frac{\frac{1}{{2}^{2}}(1-\frac{1}{{2}^{n-1}})}{1-\frac{1}{2}}$-(16-8n)•$\frac{1}{{2}^{n+1}}$
=4-4(1-$\frac{1}{{2}^{n-1}}$)-$\frac{16-8n}{{2}^{n+1}}$
=$\frac{4n}{{2}^{n}}$,
∴Tn=$\frac{8n}{{2}^{n}}$.

点评 本题考查数列的通项及前n项和,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.函数f(x)=$\sqrt{1-2cos(2x-\frac{π}{3})}$的单调增区间为(  )
A.$[{kπ+\frac{π}{6},kπ+\frac{2π}{3}}](k∈Z)$B.[kπ-$\frac{π}{3}$,kπ](k∈Z)C.[kπ+$\frac{π}{6}$,kπ+$\frac{π}{3}$](k∈Z)D.[kπ+$\frac{π}{3}$,kπ+$\frac{2π}{3}$](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数y=f(x-1)定义域是[-2,3],则y=f(2x+1)的定义域是(  )
A.$[-2,\frac{1}{2}]$B.[-1,4]C.$[-\frac{5}{2},\frac{5}{2}]$D.[-3,7]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知展开式(x2-x-2)3(x2+x-2)3=a0+a1x+…+a12x12,则a0+a1的值为(  )
A.64B.0C.-64D.128

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.掷两颗均匀的骰子,则点数之和为7的概率等于(  )
A.$\frac{1}{18}$B.$\frac{1}{9}$C.$\frac{1}{6}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=lnx-$\frac{a(x-1)}{x+1}$.
(Ⅰ)若函数f(x)在(0,+∞)上为单调增函数,求a的取值范围;
(Ⅱ)设m>n>0,求证:$\frac{m-n}{lnm-lnn}<\frac{m+n}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知递减的等差数列{an},数列{bn}满足bn=2${\;}^{{a}_{n}}$,b1b2b3=64,b1+b2+b3=14,
(Ⅰ)求{an}的通项公式;     
(Ⅱ)求{an}的前n项和Sn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在△ABC中,如果sinA=$\sqrt{3}$sinC,B=$\frac{π}{6}$,角B所对的边b=2,则边c=(  )
A.1B.$\sqrt{3}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$+2$\overrightarrow{b}$|=4$\sqrt{2}$,则$\overrightarrow{a}$•$\overrightarrow{b}$的取值范围是(  )
A.(-∞,4]B.[4,+∞)C.(-∞,2]D.[2,+∞)

查看答案和解析>>

同步练习册答案