精英家教网 > 高中数学 > 题目详情
15.已知f(x)=x2+4x+3.
(1)求f(x)在区间[t,t+1]上的最小值g(t);
(2)画出g(t)的图象;
(3)求使得g(t)的值为8时的t值.

分析 (1)f(x)=x2+4x+3=(x+2)2-1,顶点是(-2,-1),由于抛物线开口向上,分类讨论,确定对称轴与区间的位置关系,即可得到结论;
(2)由(1)中g(t)的解析式,结合二次函数的图象,可得函数的图象;
(3)由(2)中函数的图象,可得g(t)的值为8时的t值.

解答 解:(1)f(x)=x2+4x+3=(x+2)2-1,顶点是(-2,-1),由于抛物线开口向上
①当t+1<-2,即t<-3时,最小值是g(t)=f(t+1)=(t+1)2+4(t+1)+3=t2+6t+8;
②当t>-2时,最小值是g(t)=f(t)=t2+4t+3,;
③-3<t<-2时,最小值是g(t)=f(-2)=-1,
综上所述:g(t)=$\left\{\begin{array}{l}{t}^{2}+6t+8,t<-3\\-1,-3≤t≤-2\\{t}^{2}+4t+3,t>-2\end{array}\right.$
(2)g(t)的图象如下图所示:

(3)由图可得:当t=-5,或t=1时,g(t)=8.

点评 本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.计算:lg5lg20+(lg2)2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.数列1,$\frac{4}{3}$,2,$\frac{16}{5}$,$\frac{16}{3}$,…的一个通项公式为an=$\frac{{2}^{n}}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设向量$\overrightarrow{AB}$=(1,2cosθ),$\overrightarrow{BC}$=(m,-4),θ∈(-$\frac{π}{2}$,$\frac{π}{2}$).
(1)若m=-4,且A、B、C三点共线,求θ的值;
(2)若对任意m∈[-1,0],$\overrightarrow{AC}$•$\overrightarrow{BC}$≤10恒成立,求sin(θ-$\frac{π}{2}$)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知点B(0,2),C(2,4).向量$\overrightarrow{OP}$在$\overrightarrow{OB}$和$\overrightarrow{OC}$方向上的投影分别是3和$\frac{7}{5}$$\sqrt{5}$则点P的坐标为(1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.射线OA绕端点O逆时针旋转270°到达OB位置,由OB位置顺时针旋转一周到达OC位置,求∠AOC的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.若函数y=4x-3•2x+3的值域为[1,7],试确定x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求函数f(x)=1og22x•log${\;}_{\frac{1}{4}}$x,x∈[$\frac{1}{2}$,8]的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=x2+2,g(x)=sinx,则f[g(x)]=sin2x+2.

查看答案和解析>>

同步练习册答案