精英家教网 > 高中数学 > 题目详情
已知实数x、y满足方程(x-a+1)2+(y-1)2=1,当0≤y≤b(b∈R)时,由此方程可以确定一个偶函数y=f(x),则抛物线y=-
1
2
x2
的焦点F到点(a,b)的轨迹上点的距离最大值为______.
由题意可得圆的方程一定关于y轴对称,故由-a+1=0,求得a=1
由圆的几何性质知,只有当y≤1时,才能保证此圆的方程确定的函数是一个偶函数,故0<b≤1
由此知点(a,b)的轨迹是一个线段,其横坐标是1,纵坐标属于(0,1]
又抛物线y=-
1
2
x2
故其焦点坐标为(0,-
1
2

由此可以判断出焦点F到点(a,b)的轨迹上点的距离最大距离是
(1-0)2+(1+
1
2
)
2
=
13
2

故答案为
13
2
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

对抛物线x2=4y,下列描述正确的是(  )
A.开口向上,焦点为(0,1)B.开口向上,焦点为(0,
1
16
)
C.开口向右,焦点为(1,0)D.开口向右,焦点为(
1
16
,0)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过抛物线y2=2px(p>0)的焦点F作倾斜角为90的直线交抛物线于A,B两点,若线段AB的长为8,则抛物线的准线方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知直线与抛物线y2=2px(p>0)交于A,B两点,且OA⊥OB,OD⊥AB交AB于点D,点D的坐标为(2,1),求p的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线y2=4x上一点到焦点的距离为5,这点的坐标为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线y2=4x的焦点是F,定点A(
1
2
,1)
,P是抛物线上的动点,则|PA|+|PF|的最小值是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线y2=2px(p>0)上的点M到x轴的距离为3,点M到准线的距离为5,则p=(  )
A.1B.9C.
1
2
或9
D.1或9

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
4
+
y2
3
=1

(1)双曲线与椭圆C具有相同的焦点,且它们的离心率互为倒数,求双曲线的方程;
(2)设椭圆C的右焦点为F2,A、B是椭圆上的点,且
AF2
=2
F2B
,求直线AB的斜率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线y2=-4x上一点A到焦点的距离等于5,则A到坐标原点的距离为______.

查看答案和解析>>

同步练习册答案