精英家教网 > 高中数学 > 题目详情
过抛物线y2=2px(p>0)的焦点F作倾斜角为90的直线交抛物线于A,B两点,若线段AB的长为8,则抛物线的准线方程为______.
由题意,根据抛物线的定义可得2p=8,∴
p
2
=2

∴抛物线方程为y2=8x
∴抛物线的准线方程为x=-2
故答案为:x=-2
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知平面αβ,直线l?α,点P∈l,平面α、β间的距离为5,则在β内到点P的距离为13且到直线l的距离为5
2
的点的轨迹是(  )
A.一个圆B.四个点
C.两条直线D.双曲线的一支

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为(  )
A.y2=4x或y2=8xB.y2=2x或y2=8x
C.y2=4x或y2=16xD.y2=2x或y2=16x

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求满足下列条件的曲线方程:
(1)经过两点P(-2
3
,1),Q(
3
,-2)
的椭圆的标准方程;
(2)与双曲线
x2
9
-
y2
16
=1
有公共渐近线,且经过点(-3,2
3
)的双曲线的标准方程;
(3)焦点在直线x+3y+15=0上的抛物线的标准方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设直线l:2x+y+2=0关于原点对称的直线为l′,若l′与椭圆x2+
y2
4
=1的交点为A、B,点P为椭圆上的动点,则使△PAB的面积为
1
2
的点P的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线的顶点在原点,它的准线经过双曲线
x2
a2
-
y2
b2
=1
的左焦点,且与x轴垂直,抛物线与此双曲线交于点(
3
2
6
)
,求抛物线和双曲线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知△FAB,点F的坐标为(1,0),点A、B分别在图中抛物线y2=4x及圆(x-1)2+y2=4的实线部分上运动,且AB总是平行于x轴,那么△FAB的周长的取值范围为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知实数x、y满足方程(x-a+1)2+(y-1)2=1,当0≤y≤b(b∈R)时,由此方程可以确定一个偶函数y=f(x),则抛物线y=-
1
2
x2
的焦点F到点(a,b)的轨迹上点的距离最大值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线方程为y2=2px(p>0),直线l:x+y=m过抛物线的焦点且被抛物线截得的弦长为3,求p的值.

查看答案和解析>>

同步练习册答案