精英家教网 > 高中数学 > 题目详情
求满足下列条件的曲线方程:
(1)经过两点P(-2
3
,1),Q(
3
,-2)
的椭圆的标准方程;
(2)与双曲线
x2
9
-
y2
16
=1
有公共渐近线,且经过点(-3,2
3
)的双曲线的标准方程;
(3)焦点在直线x+3y+15=0上的抛物线的标准方程.
(1)依题意,可设椭圆的方程为
x2
m
+
y2
n
=1(m>0,n>0),则
∴椭圆经过两点P(-2
3
,1),Q(
3
,-2)

12
m
+
1
n
=1
3
m
+
4
n
=1

∴m=15,n=5
∴经过两点P(-2
3
,1),Q(
3
,-2)
的椭圆的标准方程为
x2
15
+
y2
5
=1

(2)设所求双曲线的方程为
x2
9
-
y2
16
(λ≠0),
将点(-3,2
3
)代入得λ=
1
4

所求双曲线的标准方程为
4x2
9
-
y2
4
=1

(3)令x=0得y=-5;令y=0得x=-15;
∴抛物线的焦点坐标为:(-15,0),(0,-5)
当焦点为(-15,0)时,即
p
2
=15,
∴p=30,此时抛物线方程为:y2=-60x:
当焦点为(0,-5)时,即
p
2
=5,
∴p=10,此时抛物线方程为:x2=-20y;
故所求抛物线的标准方程为:y2=-60x或x2=-20y.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

对抛物线x2=4y,下列描述正确的是(  )
A.开口向上,焦点为(0,1)B.开口向上,焦点为(0,
1
16
)
C.开口向右,焦点为(1,0)D.开口向右,焦点为(
1
16
,0)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(重点中学学生做)一个动圆与定圆F:(x+2)2+y2=1相外切,且与定直线L:x=1相切,则此动圆的圆心M的轨迹方程是(  )
A.y2=4xB.y2=-2xC.y2=-4xD.y2=-8x

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

抛物线y2=2px(p>0)上一点M(3,m)到焦点的距离等于5,求抛物线的方程和m的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知P在抛物线y2=4x上,那么点P到点Q(2,1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为(  )
A.(
1
4
,-1)
B.(
1
4
,1)
C.(1,2)D.(1,-2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过抛物线y2=2px(p>0)的焦点F作倾斜角为90的直线交抛物线于A,B两点,若线段AB的长为8,则抛物线的准线方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知直线与抛物线y2=2px(p>0)交于A,B两点,且OA⊥OB,OD⊥AB交AB于点D,点D的坐标为(2,1),求p的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
4
+
y2
3
=1

(1)双曲线与椭圆C具有相同的焦点,且它们的离心率互为倒数,求双曲线的方程;
(2)设椭圆C的右焦点为F2,A、B是椭圆上的点,且
AF2
=2
F2B
,求直线AB的斜率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)如图,已知抛物线C:为其准线,过其对称轴上一点P 作直线与抛物线交于A、B两点,连结OA、OB并延长AO、BO分别交于点M、N。(1)求的值;

(2)记点Q是点P关于原点的对称点,
设P分有向线段所成的比为
求证: 

查看答案和解析>>

同步练习册答案