精英家教网 > 高中数学 > 题目详情
已知抛物线的顶点在原点,它的准线经过双曲线
x2
a2
-
y2
b2
=1
的左焦点,且与x轴垂直,抛物线与此双曲线交于点(
3
2
6
)
,求抛物线和双曲线的方程.
由题意,设抛物线的方程为y2=2p
x
(p>0)

∵点(
3
2
6
)
在抛物线上∴6=2p•
3
2
,p=2

∴抛物线的方程为y2=4x.
∵抛物线的准线方程x=-1
∴双曲线
x2
a2
-
y2
b2
=1
的左焦点F1(-1,0),则c=1,∴a2+b2=1.
∵点(
3
2
6
)
在双曲线
x2
a2
-
y2
b2
=1
上,∴
9
4
a2
-
6
b2
=1

a2+b2=1
9
4a2
-
6
b2
=1
c=1
解得a2=
1
4
b2=
3
4

∴双曲线的方程为4x2-
4y2
3
=1

∴所求抛物线和双曲线的方程分别为y2=4x,4x2-
4y2
3
=1
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

以椭圆
x2
9
+
y2
5
=1
的中心为顶点,右焦点为焦点的抛物线方程是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(重点中学学生做)一个动圆与定圆F:(x+2)2+y2=1相外切,且与定直线L:x=1相切,则此动圆的圆心M的轨迹方程是(  )
A.y2=4xB.y2=-2xC.y2=-4xD.y2=-8x

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知P在抛物线y2=4x上,那么点P到点Q(2,1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为(  )
A.(
1
4
,-1)
B.(
1
4
,1)
C.(1,2)D.(1,-2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过抛物线y2=2px(p>0)的焦点F作倾斜角为90的直线交抛物线于A,B两点,若线段AB的长为8,则抛物线的准线方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

抛物线C:y2=2px(p>0)的焦点为F,准线为l,M是抛物线C上一动点,A(0,
3
)
,过M作MN垂直准线l,垂足为N,若|MN|+|MA|的最小值为2,则抛物线C的方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知直线与抛物线y2=2px(p>0)交于A,B两点,且OA⊥OB,OD⊥AB交AB于点D,点D的坐标为(2,1),求p的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线y2=4x的焦点是F,定点A(
1
2
,1)
,P是抛物线上的动点,则|PA|+|PF|的最小值是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线y=x2到直线2x-y=4距离最近的点的坐标是(  )
A.(
3
2
5
4
B.(1,1)C.(
3
2
9
4
D.(2,4)

查看答案和解析>>

同步练习册答案