精英家教网 > 高中数学 > 题目详情
已知抛物线y2=4x上一点到焦点的距离为5,这点的坐标为______.
∵抛物线方程为y2=4x,
∴焦点为F(1,0),准线为l:x=-1
设所求点坐标为P(x,y)
作PQ⊥l于Q
根据抛物线定义可知P到准线的距离等于P、Q的距离
即x+1=5,解之得x=4,
代入抛物线方程求得y=±4
故点P坐标为:(4,±4)
故答案为:(4,4)或(4,-4).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知过抛物线y2=2px(p>0)的焦点,斜率为2
2
的直线交抛物线于A(x1,y1)和B(x2,y2)(x1<x2)两点,且|AB|=9,
(1)求该抛物线的方程;
(2)O为坐标原点,C为抛物线上一点,若
OC
=
OA
OB
,求λ的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设直线l:2x+y+2=0关于原点对称的直线为l′,若l′与椭圆x2+
y2
4
=1的交点为A、B,点P为椭圆上的动点,则使△PAB的面积为
1
2
的点P的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知△FAB,点F的坐标为(1,0),点A、B分别在图中抛物线y2=4x及圆(x-1)2+y2=4的实线部分上运动,且AB总是平行于x轴,那么△FAB的周长的取值范围为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,点A,B在抛物线y2=2px(p>0)上,且OA⊥OB,OD⊥AB交AB于D,则点D在(  )
A.某个圆上运动B.某个椭圆上运动
C.某个双曲线上运动D.某个抛物线上运动

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知实数x、y满足方程(x-a+1)2+(y-1)2=1,当0≤y≤b(b∈R)时,由此方程可以确定一个偶函数y=f(x),则抛物线y=-
1
2
x2
的焦点F到点(a,b)的轨迹上点的距离最大值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

点A(3,2)为定点,点F是抛物线y2=4x的焦点,点P在抛物线y2=4x上移动,若|PA|+|PF|取得最小值,则点P的坐标为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设抛物线y2=2px(p>0)上各点到直线3x+4y+12=0的距离的最小值为1,则p=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过抛物线y2=8x的焦点作倾斜角45°的直线,则被抛物线截得的弦长为(  )
A.8B.16C.32D.64

查看答案和解析>>

同步练习册答案