分析 由于电梯在每层停的概率相等且相互独立,十层电梯从低层到顶层停不少于3次,包括停3次,停4次,停5次,…直到停9次,根据相互独立事件概率加法公式,我们计算出停3次,停4次,…,停9次的概率,进而即可得到答案.设从低层到顶层停k次,我们易计算其概率,根据组合数公式,易分析出结论
解答 解:依题意,从低层到顶层停不少于3次,应包括停3次,停4次,停5次,…直到停9次(2分)
∴从低层到顶层停不少于3次的概率p=${C}_{9}^{3}(\frac{1}{2})^{3}(\frac{1}{2})^{6}$+C${\;}_{9}^{4}(\frac{1}{2})^{4}(\frac{1}{2})^{5}$+…+${C}_{9}^{9}(\frac{1}{2})^{9}$=$\frac{233}{256}$,
设从低层到顶层停k次,则其概率为${C}_{9}^{k}(\frac{1}{2})^{k}(\frac{1}{2})^{9-k}$=${C}_{9}^{k}(\frac{1}{2})^{9}$,
∴当k=4或k=5时,C9k最大,即${C}_{9}^{k}(\frac{1}{2})^{9}$.最大.(9分)
点评 本题考查的知识点是n次独立重复试验中恰好发生k次的概率,离散型随机变量及其分布列,离散型随机变量的期望,要想计算一个事件的概率,首先我们要分析这个事件是分类的(分几类)还是分步的(分几步),然后再利用加法原理和乘法原理进行求解.
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[\frac{{\sqrt{3}}}{2},1)$ | B. | $[\frac{{\sqrt{2}}}{2},\frac{{\sqrt{3}}}{2}]$ | C. | $[\frac{{\sqrt{2}}}{2},1)$ | D. | $[\frac{1}{2},1)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [2,7] | B. | [2,6] | C. | [6,7] | D. | [0,7] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com