分析 对f(x)求导,确定出不等式的等价结论为二次函数大于0,从而确定出m的范围.
解答 解:∵f(x)=$\frac{2lnx+(x-m)^{2}}{x}$,
∴f(x)定义域为(0,+∞),
f′(x)=$\frac{{x}^{2}-2lnx+2{-m}^{2}}{{x}^{2}}$,
构造函数h(x)=xf(x),
∴h′(x)=f′(x)•x+f(x)=$\frac{{2x}^{2}-2mx+2}{x}$>0对存在x∈[1,2]成立,
∴存在x∈[1,2]使得:x2-mx+1>0,
令g(x)=x2-mx+1,
∴g(1)>0或g(2)>0即可,
m<2或m<$\frac{5}{2}$,
∴m<$\frac{5}{2}$,
故答案为:(-∞,$\frac{5}{2}$).
点评 本题考查函数求导,以及不等式的等价变换问题.
科目:高中数学 来源: 题型:选择题
| A. | a>b>c | B. | b>a>c | C. | c>a>b | D. | a>c>b |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 1 | C. | 2或1 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -log20152014 | B. | 1 | C. | -1+log20152014 | D. | -1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{13}$ | B. | $\frac{12}{13}$ | C. | $-\frac{5}{13}$ | D. | $-\frac{12}{13}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com