精英家教网 > 高中数学 > 题目详情
19.设|$\overrightarrow{OA}$|=1,|$\overrightarrow{OB}$|=2,$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,$\overrightarrow{OP}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$,且λ+μ=1,则$\overrightarrow{OA}$在$\overrightarrow{OP}$上的投影的取值范围是(-$\sqrt{5}$,1].

分析 由条件求得|$\overrightarrow{OP}$|、$\overrightarrow{OA}•\overrightarrow{OP}$的值,可得$\overrightarrow{OA}$在$\overrightarrow{OP}$上的投影为x=$\frac{λ}{\sqrt{{5λ}^{2}-8λ+4}}$,分类讨论,求得$\frac{1}{x}$的范围,可得x的范围.

解答 解:∵|$\overrightarrow{OA}$|=1,|$\overrightarrow{OB}$|=2,$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,$\overrightarrow{OP}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$,且λ+μ=1,
∴|$\overrightarrow{OP}$|=$\sqrt{{[λ\overrightarrow{OA}+(1-λ)\overrightarrow{OB}]}^{2}}$=$\sqrt{{λ}^{2}+0+{4(1-λ)}^{2}}$=$\sqrt{{5λ}^{2}-8λ+4}$,
∴$\overrightarrow{OA}$•$\overrightarrow{OP}$=$\overrightarrow{OA}$•[λ$\overrightarrow{OA}$+(1-λ)$\overrightarrow{OB}$]=λ•${\overrightarrow{OA}}^{2}$+(1-λ)$\overrightarrow{OA}$•$\overrightarrow{OB}$=λ•${\overrightarrow{OA}}^{2}$=λ.
设$\overrightarrow{OA}$在$\overrightarrow{OP}$上的投影为x,则 $\overrightarrow{OA}$•$\overrightarrow{OP}$=x•|$\overrightarrow{OP}$|=x•$\sqrt{{5λ}^{2}-8λ+4}$=λ,
∴x=$\frac{λ}{\sqrt{{5λ}^{2}-8λ+4}}$.
当λ=0时,x=0,当λ>0时,$\frac{1}{x}$=$\sqrt{\frac{{5λ}^{2}-8λ+4}{{λ}^{2}}}$=$\sqrt{\frac{4}{{λ}^{2}}-\frac{8}{λ}+5}$=$\sqrt{{(\frac{2}{λ}-2)}^{2}+1}$,故当λ=1时,$\frac{1}{x}$取得最小值,为1,
即$\frac{1}{x}$≥1,∴0<x≤1.
当λ<0时,$\frac{1}{x}$=-$\sqrt{\frac{{5λ}^{2}-8λ+4}{{λ}^{2}}}$=-$\sqrt{\frac{4}{{λ}^{2}}-\frac{8}{λ}+5}$=-$\sqrt{{(\frac{2}{λ}-2)}^{2}+1}$<-$\sqrt{4+1}$=-$\sqrt{5}$,即 $\frac{1}{x}$<-$\sqrt{5}$,
∴-$\sqrt{5}$<x<0.
综上可得,x∈(-$\sqrt{5}$,1],
故答案为:(-$\sqrt{5}$,1].

点评 本题考点是向量在几何中的应用,综合考查了向量的线性运算,向量的数量积的运算及数量积公式,熟练掌握向量的相关公式是解题的关键,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=$\frac{2lnx+(x-m)^{2}}{x}$,若存在x∈(1,2],使得f′(x)x+f(x)>0,则实数m的取值范围是(-∞,$\frac{5}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.化简:sin(α-4π)sin(π-α)-2cos2($\frac{3π}{2}$+α)-sin(α+π)cos($\frac{π}{2}$+α).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设随机变量ξ~N(5,32),则可知3ξ-5~N(10,272).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知随机变量ξ服从正态分布N(0,σ2),且P(-2≤ξ≤2)=0.4,则P(ξ>2)=0.3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设全集为R,集合A={x|x2-2x≤0},B={x|1<x<2},则A∩∁RB=(  )
A.{x|0≤x≤1}B.{x|1<x<2}C.{x|0≤x<2}D.{x|0≤x≤1}∪{2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若圆柱的侧面展开图是一个边长为2πa的正方形,则这个圆柱的体积是(  )
A.2a3B.π2a3C.$\frac{{π}^{2}}{2}$a3D.$\frac{{π}^{2}}{3}$a3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.计算lg$\sqrt{5}$+lg2•log3$\sqrt{3}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年广东清远三中高一上学期月考一数学试卷(解析版) 题型:选择题

已知函数的定义域为,若对任意,当时,都有,则称函数上为非减函数.设函数上为非减函数,且满足以下三个条件:①;②;③.则( )

A. B. C. D.

查看答案和解析>>

同步练习册答案