(本小题满分12分)
如图示,AB是圆柱的母线,BD是圆柱底面圆的直径,C是底面圆周上一点,E是AC中点,且.
(1)求证:;
(2)求直线BD与面ACD所成角的大小.
科目:高中数学 来源: 题型:解答题
(本小题满分1 2分)
如图,四边形ABCD中,,AD∥BC,AD =6,BC =4,AB =2,点E、F分别在BC、AD上,EF∥AB.现将四边形ABEF沿EF折起,使平面ABCD平面EFDC,设AD中点为P.
( I )当E为BC中点时,求证:CP//平面ABEF
(Ⅱ)设BE=x,问当x为何值时,三棱锥A-CDF的体积有最大值?并求出这个最大值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2,M是PD的中点.
(1)求证:平面ABM⊥平面PCD;
(2)求直线CD与平面ACM所成角的正弦值;
(3)以AC的中点O为球心、AC为直径的球交PC于点N求点N到平面ACM的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
某建筑物的上半部分是多面体, 下半部分是长方体(如图). 该建筑物的正视图和侧视图(如图), 其中正(主)视图由正方形和等腰梯形组合而成,侧(左)视图由长方形和等腰三角形组合而成.
(Ⅰ)求直线与平面所成角的正弦值;
(Ⅱ)求二面角的余弦值;
(Ⅲ)求该建筑物的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分10分)如图,已知四棱锥底面为菱形,平面,,分别是、的中点.
(1)证明:
(2)设, 若为线段上的动点,与平面所成的最大角的正切值为
,求此时异面直线AE和CH所成的角.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题15分)如图,AC 是圆 O 的直径,点 B 在圆 O 上,∠BAC=30°,BM⊥AC交 AC 于点 M,EA⊥平面ABC,FC//EA,AC=4,EA=3,FC=1.
(I)证明:EM⊥BF;
(II)求平面 BEF 与平面ABC 所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分)已知如图:平行四边形ABCD中,,正方形ADEF所在平面与平面ABCD垂直,G,H分别是DF,BE的中点.
(1)求证:GH∥平面CDE;
(2)若,求四棱锥F-ABCD的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com