精英家教网 > 高中数学 > 题目详情

(本题满分14分)
如图,已知平面与直线均垂直于所在平面,且,

(Ⅰ)求证:平面; 
(Ⅱ)若,求与平面所成角的正弦值.

(Ⅰ)只需证;(Ⅱ)

解析试题分析:(Ⅰ)证明:过点于点
∵平面⊥平面,∴平面……2分
又∵⊥平面
,                      ………………2分
又∵平面
∥平面                  ………………6分

(Ⅱ)∵平面,又∵ ∴  ∴      ………………8分
∴点的中点,连结,则
平面  ∴
∴四边形是矩形              ………………10分
,得: 
又∵,∴
从而,过于点,则:
与平面所成角  ………………………………………………12分

                   
与平面所成角的正弦值为…………………………14分
考点:面面垂直的性质定理;线面平行的判定定理;线面垂直的性质定理;直线与平面所成的角。
点评:本题主要考查了线面平行的证明和直线与平面所成的角,属立体几何中的常考题型,较难.本题也可以用向量法来做:用向量法解题的关键是;首先正确的建立空间直角坐标系,正确求解平面的一个法向量。注意计算要仔细、认真。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

一个多面体的直观图、正视图、侧视图、俯视图如图所示,M、N分别为A1B、B1C1的中点.

(1)求证:MN//平面ACC1A1
(2)求证:MN^平面A1BC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是棱长为的正方体,分别是棱上的动点,且

(1)求证:
(2)当共面时,求:面与面所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

圆柱的高是8 cm,表面积是130 π cm2,求它的底面圆半径和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,某几何体的下部分是长为8,宽为6,高为3的长方体,上部分是侧棱长都相等且高为3的四棱锥,求:

(1)该几何体的体积;
(2)该几何体的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,已知三棱柱ABC-A1B1C1的侧棱与底面垂直,AA1=AB=AC=1,且AB⊥AC,M是CC1的中点,N是BC的中点,点P在直线A1B1上,且满足

(1)证明:PN⊥AM
(2)若,求直线AA1与平面PMN所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,在四棱柱中,,底面是直角梯形,,异面直线所成角为

(1)求证:平面
(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图示,AB是圆柱的母线,BD是圆柱底面圆的直径,C是底面圆周上一点,E是AC中点,且.

(1)求证:
(2)求直线BD与面ACD所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题10分)如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出
(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;
(2)按照给出的尺寸,求该多面体的体积;
 

查看答案和解析>>

同步练习册答案