精英家教网 > 高中数学 > 题目详情

圆柱的高是8 cm,表面积是130 π cm2,求它的底面圆半径和体积.

底面圆的半径为5cm,体积为200πcm3

解析试题分析:设圆柱的底面圆半径为r cm,
所以根据表面积公式可知S圆柱表=2π·r·8+2πr2=130π.
r=5(cm),即圆柱的底面圆半径为5 cm.
则圆柱的体积V=πr2h=π×52×8=200π(cm3).
考点:本小题主要考查圆柱的表面积、体积的求解.
点评:要解决此类问题,只需找准相应的数值,代入公式求解即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,是矩形边上的点,边的中点,,现将沿边折至位置,且平面平面.

⑴求证:平面平面
⑵求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在正方体中,棱长为2,是棱上中点,是棱中点,(1)求证:;(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知四棱锥P-ABCD的三视图和直观图如下:

(1)求四棱锥P-ABCD的体积;
(2) 若E是侧棱PC上的动点,是否不论点E在何位置,都有BD⊥AE?证明你的结论.
(3) 若F是侧棱PA上的动点,证明:不论点F在何位置,都不可能有BF⊥平面PAD。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

ABC的边AB,BC,CA上分别取D,E,F.使得DE=BE,FE=CE,又点O是△ADF的外心。

(Ⅰ)证明:D,E,F,O四点共圆;
(Ⅱ)证明:O在∠DEF的平分线上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,已知圆锥的轴截面ABC是边长为的正三角形,O是底面圆心.

(1)求圆锥的表面积;
(2)经过圆锥的高的中点作平行于圆锥底面的截面,求截得的圆台的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)
如图,已知平面与直线均垂直于所在平面,且,

(Ⅰ)求证:平面; 
(Ⅱ)若,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分1 2分)
如图,四边形ABCD中,,AD∥BC,AD =6,BC =4,AB =2,点E、F分别在BC、AD上,EF∥AB.现将四边形ABEF沿EF折起,使平面ABCD平面EFDC,设AD中点为P.

( I )当E为BC中点时,求证:CP//平面ABEF
(Ⅱ)设BE=x,问当x为何值时,三棱锥A-CDF的体积有最大值?并求出这个最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题15分)如图,AC 是圆 O 的直径,点 B 在圆 O 上,∠BAC=30°,BM⊥AC交 AC 于点 M,EA⊥平面ABC,FC//EA,AC=4,EA=3,FC=1.
(I)证明:EM⊥BF;
(II)求平面 BEF 与平面ABC 所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案