精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆.双曲线的实轴顶点就是椭圆的焦点,双曲线的焦距等于椭圆的长轴长.

1)求双曲线的标准方程;

2)设直线经过点与椭圆交于两点,求的面积的最大值;

3)设直线(其中为整数)与椭圆交于不同两点,与双曲线交于不同两点,问是否存在直线,使得向量,若存在,指出这样的直线有多少条?若不存在,请说明理由.

【答案】1 2 3)存在,

【解析】

1)根据椭圆方程可以得到双曲线的焦距和顶点坐标,从而直接写出双曲线方程即可;

2)设出直线方程,将三角形面积拆分为2个三角形的面积,从而利用韦达定理进行处理;

3)根据直线与两个曲线相交,通过夹逼出的取值范围,再结合向量相加为零转化出的条件,得到之间的关系,从而利用是整数,对结果进行取舍即可.

1)对椭圆,因为

故其焦点为,椭圆的长轴长为.

设双曲线方程为

由题可知:,解得.

故双曲线的方程为:.

2)因为直线AB的斜率显然不为零,

故设直线方程为,联立椭圆方程

可得

设交点

,解得

当且仅当时,即时,取得最大值.

的面积的最大值为.

3)联立直线与椭圆方程

可得

整理得

设直线与椭圆的交点为

故可得

同理:联立直线与双曲线方程

可得

整理得

设直线与双曲线的交点为

故可得

要使得

即可得

故可得

将②④代入可得

解得.

综上所述,要满足题意,只需使得:

故当时,可以取得满足题意;

即直线方程可以为

时,可以取满足题意.

即直线方程可以为

故存在这样的直线有9条,能够使得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列四个命题:

①残差平方和越小的模型,拟合的效果越好;

②用相关指数来刻画回归效果,越小,说明模型拟合的效果越好;

③散点图中所有点都在回归直线附近;

④随机误差满足,其方差的大小可用来衡量预报精确度.

其中正确命题的个数是(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一般来说,一个班级的学生学号是从1 开始的连续正整数,在一次课上,老师随机叫起班上8名学生,记录下他们的学号是:3、21、17、19、36、8、32、24,则该班学生总数最可能为( )

A. 39人B. 49人C. 59人D. 超过59人

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了响应国家号召,某校组织部分学生参与了垃圾分类,从我做起的知识问卷作答,并将学生的作答结果分为合格不合格两类与问卷的结果有关?

不合格

合格

男生

14

16

女生

10

20

1)是否有90%以上的把握认为性别问卷的结果有关?

2)在成绩合格的学生中,利用性别进行分层抽样,共选取9人进行座谈,再从这9人中随机抽取5人发送奖品,记拿到奖品的男生人数为X,求X的分布列及数学期望

附:

0100

0050

0010

0001

2703

3841

6635

10828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】位同学分成组,参加个不同的志愿者活动,每组至少人,其中甲乙人不能分在同一组,则不同的分配方案有_____种.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,O的中点.

1)证明:平面

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某超市从现有甲、乙两种酸奶的日销售量(单位:箱)的1200个数据(数据均在区间内)中,按照的比例进行分层抽样,统计结果按,分组,整理如下图:

1)求频率分布直方图(图乙)中的值,并估计1200个日销售量中,数据在区间中的个数.

2)从日销售量在的甲种酸奶的数据样本中抽取3个,记在内的数据个数为,求的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥PABC中,PAABPABCABBCPAABBC=2,D为线段AC的中点,E为线段PC上一点.

(1)求证:PABD

(2)求证:平面BDE平面PAC

(3)PA平面BDE时,求三棱锥EBCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数同时在处取得极小值,则称为一对“函数”.

(1)试判断是否是一对“函数”;

(2)若是一对“函数”.

①求的值;

②当时,若对于任意,恒有,求实数的取值范围.

查看答案和解析>>

同步练习册答案