精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}的前n项和为Sn , 数列{bn},{cn}满足 (n+1)bn=an+1 ,(n+2)cn= ,其中n∈N*.
(1)若数列{an}是公差为2的等差数列,求数列{cn}的通项公式;
(2)若存在实数λ,使得对一切n∈N*,有bn≤λ≤cn , 求证:数列{an}是等差数列.

【答案】
(1)解:∵数列{an}是公差为2的等差数列,∴an=a1+2(n﹣1), =a1+n﹣1.

∴(n+2)cn= ﹣(a1+n﹣1)=n+2,解得cn=1


(2)证明:由(n+1)bn=an+1

可得:n(n+1)bn=nan+1﹣Sn,(n+1)(n+2)bn+1=(n+1)an+2﹣Sn+1

相减可得:an+2﹣an+1=(n+2)bn+1﹣nbn

可得:(n+2)cn= = ﹣[an+1﹣(n+1)bn]

= +(n+1)bn= +(n+1)bn= (bn+bn1),

因此cn= (bn+bn1).∵bn≤λ≤cn

∴λ≤cn= (bn+bn1)≤λ,故bn=λ,cn=λ.

∴(n+1)λ=an+1 ,(n+2)λ= (an+1+an+2)﹣

相减可得: (an+2﹣an+1)=λ,即an+2﹣an+1=2λ,(n≥2).

又2λ= =a2﹣a1,则an+1﹣an=2λ(n≥1),∴数列{an}是等差数列


【解析】(1)数列{an}是公差为2的等差数列,可得an=a1+2(n﹣1), =a1+n﹣1.代入(n+2)cn= 即可得出cn . (2)由(n+1)bn=an+1 ,可得:n(n+1)bn=nan+1﹣Sn , (n+1)(n+2)bn+1=(n+1)an+2﹣Sn+1 , 相减可得:an+2﹣an+1=(n+2)bn+1﹣nbn , 代入化简可得cn= (bn+bn1).bn≤λ≤cn , λ≤cn= (bn+bn1)≤λ,故bn=λ,cn=λ.进而得出.
【考点精析】本题主要考查了等差关系的确定和数列的通项公式的相关知识点,需要掌握如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,即=d ,(n≥2,n∈N)那么这个数列就叫做等差数列;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,三角形所在的平面与长方形所在的平面垂直,.点边的中点,点分别在线段上,且.

(1)证明:

(2)求二面角的正切值;

(3)求直线与直线PG所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了了解高中生的艺术素养,从学校随机选取男,女同学各50人进行研究,对这100名学生在音乐、美术、戏剧、舞蹈等多个艺术项目进行多方位的素质测评,并把调查结果转化为个人的素养指标,制成下图,其中“*”表示男同学,“+”表示女同学.

,则认定该同学为“初级水平”,若,则认定该同学为“中级水平”,若,则认定该同学为“高级水平”;若,则认定该同学为“具备一定艺术发展潜质”,否则为“不具备明显艺术发展潜质”.

(I)从50名女同学的中随机选出一名,求该同学为“初级水平”的概率;

(Ⅱ)从男同学所有“不具备明显艺术发展潜质的中级或高级水平”中任选2名,求选出的2名均为“高级水平”的概率;

(Ⅲ)试比较这100名同学中,男、女生指标的方差的大小(只需写出结论).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,焦点在x轴上的椭圆C: =1经过点(b,2e),其中e为椭圆C的离心率.过点T(1,0)作斜率为k(k>0)的直线l交椭圆C于A,B两点(A在x轴下方).

(1)求椭圆C的标准方程;
(2)过点O且平行于l的直线交椭圆C于点M,N,求 的值;
(3)记直线l与y轴的交点为P.若 = ,求直线l的斜率k.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足,若为单调递增的等差数列,其前项和为,则__________;若为单调递减的等比数列,其前项和为,则__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某舆情机构为了解人们对某事件的关注度,随机抽取了人进行调查,其中女性中对该事件关注的占,而男性有人表示对该事件没有关注.

关注

没关注

合计

合计

(1)根据以上数据补全列联表;

(2)能否有的把握认为“对事件是否关注与性别有关”?

(3)已知在被调查的女性中有名大学生,这其中有名对此事关注.现在从这名女大学生中随机抽取人,求至少有人对此事关注的概率.

附表:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)设直线l过点(23)且与直线2x+y+1=0垂直,lx轴,y轴分别交于AB两点,求|AB|

2)求过点A4-1)且在x轴和y轴上的截距相等的直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,求满足的取值:

(2)若函数是定义在上的奇函数

①存在,不等式有解,求的取值范围;

②若函数满足,若对任意,不等式恒成立,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校艺术节对同一类的四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:

甲说:“是作品获得一等奖”;

乙说:“作品获得一等奖”;

丙说:“两项作品未获得一等奖”;

丁说:“是作品获得一等奖”.

若这四位同学中只有两位说的话是对的,则获得一等奖的作品是__________

查看答案和解析>>

同步练习册答案