【题目】已知函数
(1)当时,求满足的的取值:
(2)若函数是定义在上的奇函数
①存在,不等式有解,求的取值范围;
②若函数满足,若对任意,不等式恒成立,求实数的最大值.
【答案】(1),(2)①,②6
【解析】分析:(1)根据 ,可将方程 转化为一元二次方程:,再根据指数函数范围可得,解得,(2)①先根据函数奇偶性确定值:,再利用单调性定义确定其单调性;在上递调,最后根据单调性转化不等式为,即在时有解,根据判别式大于零可得的取值范围。②先求函数:,则,因此不等式可转化为一元二次不等式,并将其变量分离得:的最小值,其中,利用基本不等式求最值得
详解:(1)由题意,,化简得
解得(舍)或,
所以
(2)因为是奇函数,所以,所以
化简并变形得:
要使上式对任意的成立,则或
解得:或,因为的定义域是,所以舍去
所以,所以
①
对任意,有:
因为,所以,所以
因此在上递减
因为,所以
即在时有解,所以,解得
所以的取值范围为
②因为,所以
即
所以
不等式恒成立,
即
即恒成立,
令,,则在时恒成立
令,
时,,所以在上单调递减
时,,所以在上单调递增
所以,所以
所以,实数的最大值是6.
科目:高中数学 来源: 题型:
【题目】自“钓鱼岛事件”以来,中日关系日趋紧张并不断升级.为了积极响应“保钓行动”,某学校举办了一场“保钓知识大赛”,共分两组.其中甲组得满分的有1个女生和3个男生,乙组得满分的有2个女生和4个男生.现从得满分的同学中,每组各任选1个同学,作为“保钓行动代言人”.
(1)求选出的2个同学中恰有1个女生的概率;
(2)设X为选出的2个同学中女生的个数,求X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , 数列{bn},{cn}满足 (n+1)bn=an+1﹣ ,(n+2)cn= ﹣ ,其中n∈N*.
(1)若数列{an}是公差为2的等差数列,求数列{cn}的通项公式;
(2)若存在实数λ,使得对一切n∈N*,有bn≤λ≤cn , 求证:数列{an}是等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某舆情机构为了解人们对某事件的关注度,随机抽取了人进行调查,其中女性中对该事件关注的占,而男性有人表示对该事件没有关注.
关注 | 没关注 | 合计 | |
男 | |||
女 | |||
合计 |
(1)根据以上数据补全列联表;
(2)能否有的把握认为“对事件是否关注与性别有关”?
(3)已知在被调查的女性中有名大学生,这其中有名对此事关注.现在从这名女大学生中随机抽取人,求至少有人对此事关注的概率.
附表:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有 (n≥2,n∈N*)个给定的不同的数随机排成一个下图所示的三角形数阵:
设Mk是第k行中的最大数,其中1≤k≤n,k∈N*.记M1<M2<…<Mn的概率为pn .
(1)求p2的值;
(2)证明:pn> .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(江苏省南京师大附中2018届高三高考考前模拟考试数学试题)已知函数f(x)=lnx-ax+a,a∈R.
(1)若a=1,求函数f(x)的极值;
(2)若函数f(x)有两个零点,求a的范围;
(3)对于曲线y=f(x)上的两个不同的点P(x1,f(x1)),Q(x2,f(x2)),记直线PQ的斜率为k,若y=f(x)的导函数为f ′(x),证明:f ′()<k.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f (x)=ex﹣ax﹣1,其中e为自然对数的底数,a∈R.
(1)若a=e,函数g (x)=(2﹣e)x. ①求函数h(x)=f (x)﹣g (x)的单调区间;
②若函数F(x)= 的值域为R,求实数m的取值范围;
(2)若存在实数x1 , x2∈[0,2],使得f(x1)=f(x2),且|x1﹣x2|≥1,求证:e﹣1≤a≤e2﹣e.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定点,圆C: ,
(1)过点向圆C引切线l,求切线l的方程;
(2)过点A作直线 交圆C于P,Q,且,求直线的斜率k;
(3)定点M,N在直线 上,对于圆C上任意一点R都满足,试求M,N两点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com