精英家教网 > 高中数学 > 题目详情
设a是实数,函数f(x)=ax2+(a+1)x-2lnx.
(1)当a=1时,求函数f(x)的单调区间;
(2)当a=2时,过原点O作曲线y=f(x)的切线,求切点的横坐标;
(3)设定义在D上的函数y=g(x)在点P(x0,y0)处的切线方程为l:y=h(x),当x≠x0时,若
g(x)-h(x)
x-x0
<0在D内恒成立,则称点P为函数y=g(x)的“巧点”.当a=-
1
4
时,试问函数y=f(x)是否存在“巧点”?若存在,请求出“巧点”的横坐标;若不存在,说明理由.
考点:利用导数研究曲线上某点切线方程,利用导数研究函数的单调性
专题:综合题,导数的综合应用
分析:(1)求导数,利用导数的正负,可得函数f(x)的单调区间;
(2)设切点,可得切线的斜率k=4m+3-
2
m
,利用直线OM的斜率为
2m2+3m-2lnm
m
,建立方程,即可求切点的横坐标;
(3)分类讨论,根据“巧点”的定义结合函数的单调性,即可得出结论.
解答: 解:(1)当a=1时,f′(x)=
2(x2+x-1)
x
(x>0),…(1分)
由f′(x)>0得:x>
-1+
5
2
;由f′(x)<0得:0<x<
-1+
5
2
.                 …(2分)
所以,f(x)的单调增区间为(
-1+
5
2
,+∞),单调减区间为(0,
-1+
5
2
).        …(3分)
(2)当a=2时,设切点为M (m,n).
f′(x)=4x+3-
2
x
( x>0),所以,切线的斜率k=4m+3-
2
m

又直线OM的斜率为
2m2+3m-2lnm
m
,…(5分)
所以,4m+3-
2
m
=
2m2+3m-2lnm
m
,即m2+lnm-1=0,
又函数y=m2+lnm-1在(0,+∞)上递增,且m=1是一根,所以是唯一根,
所以,切点横坐标为1.                                                  …(7分)
(3)a=-
1
4
时,由函数y=f(x)在其图象上一点P(x0,y0)处的切线方程为:
y=(-
1
2
x0+
3
4
-
2
x0
)(x-x0)-
1
4
x02+
3
4
x0-2ln x0.                               …(8分)
令h(x)=(-
1
2
x0+
3
4
-
2
x0
)(x-x0)-
1
4
x02+
3
4
x0-2ln x0
设F(x)=f(x)-h(x),则F(x0)=0.
且F′(x)=f′(x)-h′(x)=-
1
2
x+
3
4
-
2
x
-(-
1
2
x0+
3
4
-
2
x0

=-
1
2
(x-x0)-(
2
x
-
2
x0
)=-
1
2x
(x-x0) (x-
4
x0
)                        …(10分)
当0<x0<2时,
4
x0
>x0,F(x)在(x0
4
x0
)上单调递增,从而有F(x)>F(x0)=0,所以,
F(x)
x-x0
>0;
当x0>2时,
4
x0
<x0,F(x)在(
4
x0
,x0)上单调递增,从而有F(x)<F(x0)=0,所以,
F(x)
x-x0
>0.
因此,y=f(x)在(0,2)和(2,+∞)上不存在“巧点”.                         …(13分)
当x0=2时,F′(x)=-
(x-2)2
2x
≤0,所以函数F(x)在(0,+∞)上单调递减.
所以,x>2时,F(x)<F(2)=0,
F(x)
x-2
<0;0<x<2时,F(x)>F(2)=0,
F(x)
x-2
<0.
因此,点(2,f(2))为“巧点”,其横坐标为2.                               …(16分)
点评:正确理解导数的几何意义、“巧点”的意义及熟练掌握利用导数研究函数的单调性是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={x|x(3-x)>0},集合B={y|y=2x+2},则A∩B=(  )
A、{x|2<x<3}
B、{x|x<0或x>2}
C、{x|x>3}
D、{x|x<0或x≥2}

查看答案和解析>>

科目:高中数学 来源: 题型:

某校在一次期末数学统测中,为统计学生的考试情况,从学校的2000名学生中随机抽取50名学生的考试成绩,被测学生成绩全部介于60分到140分之间(满分150分),将统计结果按如下方式分成八组:第一组[60,70),第二组[70,80),…,第八组[130,140],如图是按上述分组方法得到的频率分布直方图的一部分. 
(Ⅰ)求第七组的频率,并完成频率分布直方图;
(Ⅱ)估计该校的2000名学生这次考试成绩的平均分(可用中值代替各组数据平均值);
(Ⅲ)若从样本成绩属于第六组和第八组的所有学生中随机抽取两名,求他们的分差不小于10分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=lnx-x+a+1
(1)若存在 x∈(0,+∞)使得f(x)≥0成立,求a的范围;
(2)求证:当x>1时,在(1)的条件下,
1
2
x2+ax-a>xlnx+
1
2
成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的方程﹙lgx﹚2-2mlgx+(m-
1
4
)=0有两个大于1的根,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,PA为⊙O的切线,A为切点,PBC是过点O的割线,PA=10,PB=5.求:
(Ⅰ)⊙O的半径;
(Ⅱ)sin∠BAP的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+xlnx的图象在点x=e(e为自然对数的底数)处的切线斜率为3.
(Ⅰ)求实数a的值;
(Ⅱ)若k∈Z,且f(x)>kx-k对任意x>1恒成立,求k的最大值;
(Ⅲ)若ak=2ln2+3ln3+…+klnk(k≥3,k∈N*),证明:
n
k=3
1
ak
<1(n≥k,n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(a+1)lnx+ax2+
1
2
,a∈R.
(1)当a=-
1
3
时,求f(x)的最大值;
(2)讨论函数f(x)的单调性;
(3)如果对任意x1,x2∈(0,+∞),|f(x1)-f(x2)|≥4|x1-x2|恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,∠C=90°,∠A=60°,AB=10,过C作△ABC的外接圆的切线CD,BD⊥CD,BD与外接圆交于点E,则线段BE的长为
 

查看答案和解析>>

同步练习册答案