【题目】下列命题:
①函数的最小正周期是;
②在直角坐标系中,点,将向量绕点逆时针旋转得到向量,则点的坐标是;
③在同一直角坐标系中,函数的图象和函数的图象有两个公共点;
④函数在上是增函数.
其中,正确的命题是________(填正确命题的序号).
【答案】①②④
【解析】
由余弦函数的周期公式可判断①;由任意角的三角函数定义可判断②;由余弦函数和一次函数的图象可判断③;由诱导公式和余弦函数的单调性可判断④.
函数y=cos(﹣2x)即y=cos2x的最小正周期是π,故①正确;
在直角坐标系xOy中,点P(a,b),
将向量绕点O逆时针旋转90°得到向量,
设a=rcosα,b=rsinα,可得rcos(90°+α)=﹣rsinα=﹣b,
rsin(90°+α)=rcosα=a,则点Q的坐标是(﹣b,a),故②正确;
在同一直角坐标系中,函数y=cosx的图象和函数y=x的图象有一个公共点,故③错误;
函数y=sin(x)即y=﹣cosx在[0,π]上是增函数,故④正确.
故答案为:①②④.
科目:高中数学 来源: 题型:
【题目】下列说法正确的是()
A. 锐角是第一象限的角,所以第一象限的角都是锐角;
B. 如果向量,则;
C. 在中,记,,则向量与可以作为平面ABC内的一组基底;
D. 若,都是单位向量,则.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在直角坐标系中,点到抛物线的准线的距离为.点是上的定点,,是上的两动点,且线段的中点在直线上.
(Ⅰ)求曲线的方程及的值;
(Ⅱ)记,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设A={x|2x2+ax+2=0},B={x|x2+3x+2a=0},且A∩B={2}.
(1)求a的值及集合A,B;
(2)设全集U=A∪B,求(UA)∪(UB);
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为.
(1)求曲线的普通方程与曲线的直角坐标方程;
(2)曲线与相交于两点,求过两点且面积最小的圆的标准方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设为正整数,集合(),对于集合中的任意元素和,记.
(1)当时,若,,求和的值;
(2)当时,设是的子集,且满足:对于中的任意元素、,当、相同时,是奇数,当、不同时,是偶数,求集合中元素个数的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点P(2,2),圆C:x2+y2-8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.
(1)求M的轨迹方程;
(2)当|OP|=|OM|时,求l的方程及△POM的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com