精英家教网 > 高中数学 > 题目详情
9.设函数f(x)=ax+xeb-x(其中a,b为常数),函数y=f(x)在点(2,2e+2)处的切线的斜率为e-1.
(1)求函数y=f(x)的解析式;
(2)求函数y=f(x)的单调区间.

分析 (1)求出函数的导数,得到关于a,b的不等式组,解出即可;
(2)求出函数的导数,根据函数的单调性得到f′(x)>0,f(x)递增.

解答 解:(1)f'(x)=a+eb-x-xeb-x
f'(2)=a-eb-2=e-1,①,
且f(2)=2a+2eb-2=2e+2②,
由①②得a=e,b=2,
所以f(x)=ex+xe2-x
(2)f'(x)=e+e2-x-xe2-x
令f''(x)=-e2-x-e2-x+xe2-x=e2-x(x-2)=0,解得:x=2,
x,f′′(x),f′(x)的变化如下表:

x(-∞,2)2(2,+∞)
f''(x)-0+
f'(x)
∴f'(x)最小值=e-1>0,即f'(x)>0恒成立,
所以f(x)的单调增区间为R.

点评 本题考查了函数的单调性、最值问题,考查导数的应用,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知a>1,函数f(x)=loga(x+1),g(x)=2loga(2x+t),当x∈(-1,1),t∈[4,6]时,存在x,t使得g(x)≤f(x)+4成立,则a的最小值为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=2,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,则$\overrightarrow{a}$+$\overrightarrow{b}$在$\overrightarrow{a}$上的正射影的为(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x2-2x-8,
(1)若对x>3,不等式f(x)>(m+2)x-m-15恒成立,求实数m的取值范围
(2)记h(x)=-$\frac{1}{2}$f(x)-4,那么当x≥$\frac{1}{2}$时,是否存在区间[m,n](m<n)使得函数在区间[m,n]上的值域恰好为[km,kn]?若存在,请求出区间[m,n];若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设向量$\overrightarrow a$=(2,1),$\overrightarrow b$=(1,2),若(2$\overrightarrow a$+$\overrightarrow b$)∥($\frac{1}{2}$$\overrightarrow a$+k$\overrightarrow b$),则实数k的值为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知命题p:方程x2-2ax-1=0有两个实数根;命题q:函数f(x)=x+$\frac{4}{x}$的最小值为4.给出下列命题:
①p∧q;②p∨q;③p∧¬q;④¬p∨¬q.
则其中真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知命题p:方程x2-mx+1=0有实数解,命题q:函数f(x)=log2(x2-2x+m)的定义域为R,若命题p∨q为真,¬p为真,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列说法正确的个数是(  )
(1)($\frac{16}{81}$)${\;}^{\frac{3}{4}}$+log3$\frac{5}{4}$+log3$\frac{4}{5}$=$\frac{27}{8}$;
(2)幂函数y=f(x)的图象过点(2,$\frac{\sqrt{2}}{2}$),则f(4)=2
(3)已知向量$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow{b}$=($\sqrt{3}$,1),则$\overrightarrow{a}$与$\overrightarrow{b}$夹角的大小为30°
(4)已知x>1,则函数y=$\frac{1}{x-1}$+x的最小值为2
(5)3-2,2${\;}^{\frac{1}{3}}$,log${\;}_{\frac{1}{2}}$3三个数中最大的数是2${\;}^{\frac{1}{3}}$
(6)已知a>1,f(x)=a${\;}^{{x}^{2}+2x}$,则-1<x<0 是使f(x)<1成立的充分不必要条件.
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设z=$\frac{1}{2}$x-y,式中变量x和y满足条件$\left\{\begin{array}{l}x-y+2≥0\\ x+y≥0\\ x≤1\end{array}\right.$,则z的最小值为(  )
A.-3B.$-\frac{5}{2}$C.$-\frac{3}{2}$D.$\frac{3}{2}$

查看答案和解析>>

同步练习册答案